ChatGPT一周年庆典:全面解析谁在用、怎么用及为何大受欢迎?

2022年11月30日,科技公司OpenAI推出了ChatGPT——一种能以类人方式响应指令的聊天机器人。自发布以来,它迅速吸引了广泛关注,并在首五天内吸引了超过一百万用户;目前,用户总数已达1.8亿以上。七名研究人员向《自然》杂志透露了ChatGPT如何改变了他们的科研工作方式。

MARZYEH GHASSEMI:修正而非放大医疗保健中的偏见
计算机科学家Marzyeh Ghassemi,专注于使用生成式AI来总结研究成果
生成式AI在语言和图像模型技术上取得了显著成就。在我的应用中,我主要使用ChatGPT以多种风格重写内容,例如使科学摘要更适合大众阅读,或向财务官员简洁明了地介绍研究成果。我还利用它来起草文章、电子邮件或论文的开头。
生成式AI有潜力彻底改变医疗保健——只要避免让大型科技公司掌控主导权
我对这些工具用于内容创作表示担忧,无论是学生、学者、企业还是公众使用均是如此。这些工具常常产生“幻觉”效果(即提供不准确或虚构的信息)。
更令人担忧的是,文本和图像生成易受社会偏见影响,且这些偏见不易修正。在医疗领域,Tessa是一个美国非营利组织运营的规则式聊天机器人,用于帮助饮食失调患者。加入生成式AI后,该机器人已暂停使用,因为提供了有害建议。在一些美国医院,生成模型被用来处理和生成部分电子病历内容。然而,这些系统的背后大语言模型(LLMs)并不提供医疗建议,因此不需美国食品药品监督管理局认证。这意味着LLM的使用准确性和公平性实际上依赖于医院,这是一个严重问题。
总之,无论是普通场景还是医疗环境,使用生成式AI工具都需进行更多社会责任导向的研究,而非仅追求效率或利润。这些工具虽然灵活强大,能加速账单处理和信息传递,但如果部署不当,可能会加剧现有的不公平问题。例如,研究显示,聊天机器人可能会根据患者的性别、种族、民族背景和社会经济地位推荐不同的治疗方案(参见J. Kim et al. JAMA Netw. Open 6, e2338050; 2023)。
我们必须认识到,生成式AI模型反映并放大了其训练数据的偏见。鉴于人们容易被仿真逼真的AI生成文本所说服,利用这种AI促进健康公平至关重要。例如,通过同情心训练或提出减少偏见的编辑建议,而不是简单地加速现有医疗体系,这可能会加剧不平等并产生误导性的幻觉。AI应致力于推动医疗保健系统的改进和转型。

ABEBA BIRHANE: 思考是否真的需要使用
Abeba Birhane 是一名认知科学家。
大语言模型(LLM)现已广泛应用,许多学者为了不落伍,纷纷加入这一潮流。他们可能还没弄清楚如何具体运用这项AI技术,但似乎都觉得这种先进技术肯定有其用武之地——就好比手里有锤子,到处寻找钉子一样。虽然人们普遍认为生成式AI会大幅改变社会,但这项技术的确切用途和无争议的优势仍然模糊不清。
无论是在学术研究、新闻报道还是政策报告中,生成式AI的潜在益处常常被过度夸大,而其失败、局限和缺陷则往往被忽略或只是一带而过。关于这一技术的批评性讨论也相对有限,仅集中在准确性、可靠性、性能等方面,以及模型训练依赖的数据和模型权重是否为开源或封闭源。尽管这些问题重要,但一个基本的问题却鲜少被提出:我们是否真的需要使用这项技术——尤其是在解决像医疗保健这样复杂多面的问题时?
以医疗保健为例,虽然有提议在低收入和中等收入国家采用基于LLM的方案,但众所周知,AI系统往往加剧了社会偏见(参见J. Shaffer et al. BMJ Glob. Health 8, e013874; 2023)。要真正理解并解决全球健康不平等问题,我们需要触及到社会现实的深层次原因,比如直面殖民主义和奴隶制的历史遗留问题,以及全球南北之间权力和财富的不均等分配——这意味着某些人群的健康问题被视为比其他人群更为重要。
提出一个简单的“技术解决方案”——以行动的名义——远比正视这些深层次挑战来得容易。我们真正需要的,是政治意志和权力资源的公正分配,而非仅仅依赖大语言模型。

MUSHTAQ BILAL: 把 ChatGPT 作为构架思路的工具,而非内容创造者
Mushtaq Bilal 是一名从巴基斯坦迁至丹麦的博士后研究员。
ChatGPT面市之初,我正忙于国际搬迁,并未即刻关注这项技术。但我一直密切关注社交媒体上的相关讨论。
今年一月,我的朋友Rob Lennon分享了他如何在商业领域使用ChatGPT的经验,这在X(原Twitter)上引发了广泛关注。我借鉴了他的做法,在学术写作中尝试应用ChatGPT,并在社交媒体上分享了我的经验,引发了热烈反响。此后,我在X和专注于职业发展的LinkedIn平台上分享了更多将ChatGPT应用于学术领域的方法。
我认为,生成式AI擅长搭建框架而非填充内容。大语言模型(LLMs)的训练目标是预测下一个词,这导致由聊天机器人生成的内容往往较为常规,而真正的原创研究则远不止此。
从另一个角度,ChatGPT可以成为你的思维拓展伙伴。它或许不能提供突破性的创意,但通过适当的引导,确实能帮助你朝正确的方向发展思路。它还能帮助你勾勒出研究论文的大纲,为你的研究提供一个良好的起点。
OpenAI最近推出了几款针对特定用途的ChatGPT版本,覆盖了教学和研究等领域。例如,可以定制ChatGPT,使其在回答问题时始终依据课程资料,这有助于避免机器人产生错误的“幻觉”,为学生提供了一个可靠的学习资源。

SIDDHARTH KANKARIA: 定制化教学的新工具
Siddharth Kankaria 是一名科学传播者。
最初,我对ChatGPT在科学传播方面的潜力充满期待。它似乎能清晰、简洁且通俗地总结科学论文,帮助复杂的术语变得浅显易懂。但很快,我意识到这些看似美好的应用实际上需要谨慎对待和反复校对。我发现,明智的做法是有目的地使用ChatGPT,并全面考虑其优缺点。
今年早些时候,在教授中学生科学交流和公共参与时,我抓住了这样一个机会。在这个领域,创造力和批判性思维非常关键。作为“实践中学习”的坚定支持者,我设计的课程既富有参与性也具有互动性。我通过即兴游戏、表演、辩论和讨论等方式,让学生们接触到科学交流的各种概念,比如讲故事、观众定位以及伦理和社会正义等方面。
我利用ChatGPT为课堂活动构思灵感、问题和内容。例如,它迅速整理出50个科学隐喻,如将DNA比作“生命的蓝图”和把重力描述为“床单上的球体”。
我意识到许多学生可能会在这些活动和小组项目中使用ChatGPT。我没有限制他们使用这个工具——当我自己也在依赖这个聊天机器人时,限制他们使用它似乎有些虚伪——相反,我鼓励他们自由地使用AI工具,同时也要思考这些工具的局限性。在一次关于科学写作的课上,我们一起评估了由学生和ChatGPT编写的研究论文摘要,这些摘要是匿名的。这次活动引发了关于什么是好的开场白、AI工具的局限以及如何提升个人写作技巧的精彩讨论。
至少在教授和传播科学的背景下,我认为,逐步接受新技术,同时严格审视其偏见和潜在缺陷,是一种非常明智的做法。

CLAIRE MALONE: 不常靠谱,但总能带来欢乐
科学记者 Claire Malone 表示,要想有效使用 ChatGPT,关键在于懂得如何提问以避免无关的答案。
一年前,我对 ChatGPT 在我的科学传播工作中的实用性持怀疑态度。我的工作核心是把复杂的科学概念变得通俗易懂。事实证明,我的一些顾虑是有道理的。比如,当我让这个聊天机器人把我的博士论文摘要简化表达时,结果并不尽如人意。它保留了过多的专业术语,没有能够把关键概念讲得浅显易懂。
但是,ChatGPT 确实有其优点。首先,你需要知道怎样提问才能避免无关紧要的答案。我发现 ChatGPT 是快速了解一个主题概况的有效工具,之后我还可以进一步深入探究。随着 ChatGPT 功能和精确度的日益增强,未来几年里,每个用户的体验将越来越个性化。
我认为,它在激发人们对广泛话题的好奇心方面发挥着重要作用。它是一个即时的、互动式的信息来源——尽管并非总是准确无误。它的作用与记者不同,记者不仅要核实事实,还会考虑更广泛的影响,并经常聚焦于读者可能未曾想到探讨的话题。

ETHAN MOLLICK: 在教育中拥抱人工智能
我在教学中不避讳使用人工智能,而是将其整合到每项作业和课程中。基于这种实验和对生成式 AI 工具的早期研究,我对未来的看法如下。
AI 技术将无处不在。目前,ChatGPT-3.5 是免费的,微软的 Bing 和谷歌的 Bard 也是如此。所有这些由大语言模型(LLM)驱动的系统为每个人提供了前所未有的写作和分析能力。即便技术不再进步(但实际上它还会),我认为它的普及程度会增加,且成本将保持在合理范围内。
AI 将彻底改变教学方式。学生已经在使用大语言模型作为辅导工具和学习参考。就像一个学生说的那样:“如果你可以向 ChatGPT 提问,为什么还要在课堂上举手?”我们需要深入思考如何将这些工具及其优缺点融入课堂。我们可以找到既利于教师,又利于学生和整体教育的方法。随着模型变得更加精准和强大,它们可能会直接承担教学角色。但是,直接教学只是教师角色的一小部分。课堂提供了更多,例如练习学习技能、协作解决问题、从教师那里获得支持以及社交活动。
即使有了优秀的 AI 辅导,学习环境仍然会提供额外价值,但这需要采纳像主动学习和翻转课堂这样的教学方法(在翻转课堂中,学生在上课前就已获取课程资料,上课时教师主要促进小组讨论)。这些方法已被证明非常有效,但由于教师面临的限制,实施起来一直颇具挑战。AI 有可能成为这种变革的催化剂。
我们以前也经历过类似的变革。比如,20 世纪 70 年代计算器的引入,彻底改变了数学教学的方式。现在,教育面临着一个更大的挑战,但同时也带来了机遇和风险。以道德和恰当的方式实验 AI,可以帮助我们探索如何运用教学原则来提升学生学习效果的最佳方法。

FRANCISCO TUSTUMI:迫切需要透明度
Francisco Tustumi 认为,由大语言模型(LLM)驱动的聊天机器人需要对批判性审查更加开放。
随着 ChatGPT 和其他生成式 AI 系统展现出的强大能力,有人开始认为这些工具可能最终会替代人类在科学文章审查和写作方面的工作。确实,这些系统在稿件准备和审查中,包括数据搜索方面,可能会发挥作用。但它们也有局限性。


首先,ChatGPT 并非搜索引擎 — 研究已显示它会给出错误的答案(S. Fergus et al. J. Chem. Educ. 100, 1672–1675; 2023)。此外,它在构建文本的过程中缺乏透明度。科学论文必须拥有明确且可复制的研究方法。文章应详细介绍信息来源、搜索、选择、数据提取和报告策略,让读者能够全面评估文章中的数据和文本。
希望将来的 AI 程序能更适合进行这样的批判性评估。在那之前,它们还不能可靠地用于学术论文的撰写和审查。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值