机器学习
文章平均质量分 89
007djx
这个作者很懒,什么都没留下…
展开
-
机器学习(西瓜书)学习笔记1 ——绪论,机器学习的概念和基本术语
一、什么是机器学习?机器学习就是研究如何通过计算机,利用经验来改善系统自身的性能。此外,Mitchell给出的机器学习定义是:假设用P来评估计算机程序在某类任务T上的性能,若一个程序通过利用经验E在T任务上性能获得了提高,那么说改程序对E进行了学习。二、相关概念1、数据集:例如:(色泽:乌黑,根蒂:稍蜷,敲声:沉闷),(色泽:浅白,根蒂:硬挺,敲声:清脆),......。这组记录的...原创 2019-06-17 20:57:06 · 497 阅读 · 0 评论 -
机器学习(西瓜书)学习笔记2——假设空间和归纳偏好
一、假设空间首先,有两个概念:归纳和演绎。简言之,归纳就是特殊推一般,演绎就是一般推特殊。机器学习是从大量样本训练,再利用测试数据进行测试。很显然,机器学习属于归纳的过程,亦称:归纳学习。以西瓜举例,西瓜成熟与否和西瓜的色泽、根蒂、敲声这三个属性有关系,色泽的属性值:乌黑、青绿。根蒂的属性值:蜷缩、硬挺。敲声的属性值:浊响、沉闷。由这三种属性值可以构成24种不同的组合,这称为假设空间。其中...原创 2019-06-17 21:39:30 · 1036 阅读 · 0 评论 -
机器学习(西瓜书)学习笔记3——模型评估与选择
一、经验误差和过拟合1.经验误差:学习器在训练集上的误差称为“训练误差”(traing error)或“经验误差”(empirical error)。2.泛化误差:学习器在新样本上的误差称为泛化误差(generalization error)。泛化误差小的学习器是我们想要的。3、过拟合:当学习器把训练样本学的太好,很可能把训练数据的特征作为所有数据都具有的特征,这样会导致学习器在测...原创 2019-06-19 22:06:56 · 435 阅读 · 0 评论 -
机器学习(西瓜书)学习笔记4——决策树
一、基本流程1、一棵决策树包含一个根节点、若干个内部结点和若干个叶结点;叶结点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根节点包含样本全集。从根结点到每个叶结点的路径对应了一个判定结果序列。2、决策树的基本流程:输入:训练集;属性集过程:函数TreeGenerate(D,A)(1): 生成结点node...原创 2019-06-28 20:19:14 · 835 阅读 · 0 评论 -
机器学习(西瓜书)学习笔记5——神经网络
一、神经元模型1.神经网络的定义:神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体作出交互反应。2.神经元:神经网络中最基本的成分是神经元模型。某一神经元的点位超过某一“阈值”,它会被激活,变为“兴奋”状态,向其他神经元发送化学物质。图中x1,x2...xi,xn为来自第i个神经元的输入,wi 表示第i个神经元的的权值,θ表示当前...原创 2019-07-15 20:12:11 · 825 阅读 · 0 评论 -
《统计学习方法》学习笔记3——k近邻法
一、k近邻算法算法描述:输入:训练数据集 其中, 为实例的特征向量, 为实例的类别,i=1,2,...,N;实例特征向量x;输出:实例x所属的类y。(1)根据给定的距离度量,在训练集T中找出与x最邻近的k个点,包含这k个点的x邻域记作 ;(2)在中根据分类决策规则,决定x...原创 2019-07-19 20:58:40 · 466 阅读 · 0 评论 -
机器学习(西瓜书)学习笔记6——支持向量机
一.首先讲两个概念:间隔和支持向量 对于给定的训练集,分类学习的目的是在样本空间中找到一个划分超平面,将不同类别的样本分开。这个超平面可能有很多,哪个才是最好的? ...原创 2019-08-23 09:28:04 · 402 阅读 · 0 评论