最大熵原理

面试背这个就行,下面内容是对这段话的详细解释

首先我们需要对最大熵原理中的熵进行理解,熵的公式为: H = − ∑ P ( x ) l o g P ( x ) H=-∑P(x)logP(x) H=P(x)logP(x)
为什么要提出熵呢?熵可以对信息的不确定程度进行量化,从而方便我们解决更加复杂的问题。
而最大熵原理的意思,就是当满足(1)约束条件的情况下,(2)剩余情况等概率时,此时的熵是最大的。

详解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

补充

再使用拉格朗日乘数法时,对于不能直接进行求导求解的问题,还可以使用其对偶问题,如同SVM算法中描述的一样,去进行求解,使用对偶问题仅是为了简化计算过程。

为最大熵模型量身定制的两个最优化方法分别是通用迭代尺度法(GIS)和改进的迭代尺度法(IIS)。
在这里插入图片描述
在这里插入图片描述
知道有这两个最优化方法即可,如需使用,再进行深入(估计以后都用不到)。

### 实现最大熵模型 在 MATLAB 中实现最大熵原理通常涉及优化问题求解器来最大化给定约束条件下的。MATLAB 提供了多种工具箱可以用于此目的,特别是统计学和机器学习工具箱中的函数。 #### 使用 `fmincon` 函数进行最优化 为了构建基于最大熵原则的分类器或其他预测模型,可以通过定义目标函数并利用 `fmincon` 来寻找最优参数集。下面是一个简单的例子: ```matlab function w = maxent_fit(X, Y) % X 是特征矩阵 (NxD),Y 是标签向量 (Nx1) N = size(X, 1); D = size(X, 2); options = optimoptions('fmincon', 'Algorithm', 'interior-point'); initial_w = zeros(D + 1, 1); % 初始化权重向量 Aeq = []; beq = []; lb = -inf * ones(D + 1, 1); ub = inf * ones(D + 1, 1); nonlcon = @(w) deal([], constraint_function(w, X, Y)); w = fmincon(@(w) negative_log_likelihood(w, X, Y), ... initial_w, [], [], Aeq, beq, lb, ub, nonlcon, options); end function nll = negative_log_likelihood(w, X, Y) % 负对数似然作为损失函数 z = bsxfun(@plus, X * w(2:end), w(1)); p = exp(z) ./ (1 + exp(z)); nll = sum(-log((p .* Y) + ((1-p) .* (1-Y)))); end function [cineq, ceq] = constraint_function(w, X, Y) % 定义任何必要的不等式/等式约束 cineq = []; % 此处无额外约束 ceq = []; end ``` 这段代码展示了如何设置一个二元逻辑回归的最大熵版本,其中通过最小化负对数似然来进行训练[^4]。注意这里并没有直接提到具体的引用编号,因为上述方法是根据一般性的最大熵理论以及MATLAB内置功能组合而成的新颖解决方案。 对于更复杂的情况或者特定领域内的应用,则可能需要调整这个框架以适应具体的需求,比如引入更多的先验知识或者其他类型的正则项。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xu_Wave

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值