用 手机自动化脚本,从自媒体上获取视频,一个商品对应几百个视频,我们把这几百个视频下载下来,进行分镜
视频切片,从自媒体上下载视频,通过cv库用直方图识别每个镜头进行切片。
下载多个图片进行视频的伪原创,加上智能Ai文字
混剪完之后再通过自动化技术上传到各大平台,这其中真正做到一个人管上千个账号
电商创业团队需要技术的对接
import cv2
import numpy as np
def calculate_histogram(frame):
"""计算图像的直方图"""
# 转换到灰度图像
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 计算灰度直方图
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
# 归一化直方图
hist = cv2.normalize(hist, hist).flatten()
return hist
def compare_histograms(hist1, hist2):
"""比较两个直方图的差异,使用相关系数"""
return cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL)
def split_video_into_shots(video_path, threshold=0.7):
"""根据直方图切片视频"""
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS) # 获取视频的帧率
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 获取视频的总帧数
shots = []
last_histogram = None
shot_start = 0
for i in range(frame_count):
ret, frame = cap.read()
if not ret:
break
hist = calculate_histogram(frame)
# 如果是第一帧,初始化
if last_histogram is None:
last_histogram = hist
continue
# 比较当前帧和上一帧的直方图
similarity = compare_histograms(last_histogram, hist)
# 如果直方图差异大于阈值,说明是镜头切换
if similarity < threshold:
# 保存当前镜头的切片起始帧和结束帧
shots.append((shot_start, i - 1))
shot_start = i # 更新新的镜头起始帧
last_histogram = hist
# 处理最后一个镜头
shots.append((shot_start, frame_count - 1))
cap.release()
return shots, fps
def save_video_shots(video_path, shots, output_folder):
"""将切片的视频保存为多个文件"""
cap = cv2.VideoCapture(video_path)
for idx, (start_frame, end_frame) in enumerate(shots):
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
output_path = f"{output_folder}/shot_{idx + 1}.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, 30.0, (int(cap.get(3)), int(cap.get(4))))
for frame_idx in range(start_frame, end_frame + 1):
ret, frame = cap.read()
if not ret:
break
out.write(frame)
out.release()
cap.release()
# 示例:分割视频
video_path = "linshi.mp4"
output_folder = "output_shots"
shots, fps = split_video_into_shots(video_path, threshold=0.7)
print(f"视频被切分成 {len(shots)} 个镜头。")
# 保存每个镜头的视频片段
save_video_shots(video_path, shots, output_folder)