HDU 2553 位运算求N皇后

N皇后问题

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 13442 Accepted Submission(s): 6099

Problem Description
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。

Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。

Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。

Sample Input
1
8
5
0

Sample Output
1
92
10

只要学了编程的人大概都听过这么一个问题。 。但是能用位运算去写的就不太多。 。参考大牛博客

http://www.matrix67.com/blog/archives/266

速度是非常快的

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;
int n;
int tot;
int high;

void dfs(int row,int ld,int rd){
    if(row == high){
        tot++;
        return ;
    }
    int pos = (~(row|ld|rd))&high;
    while(pos){
        int P = pos&(-pos);
        pos = pos - P;
        dfs(row+P,(ld+P)<<1,(rd+P)>>1);
    }
}
int main()
{   
    while(scanf("%d",&n)&&n){
        high = (1<<n)-1;
        tot = 0;
        dfs(0,0,0);
        printf("%d\n",tot);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值