POJ 2533 O（nlogn）解最长递增子序列（构造法）

Longest Ordered Subsequence
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 41083 Accepted: 18109
Description

A numeric sequence of ai is ordered if a1 < a2 < … < aN. Let the subsequence of the given numeric sequence (a1, a2, …, aN) be any sequence (ai1, ai2, …, aiK), where 1 <= i1 < i2 < … < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input

7
1 7 3 5 9 4 8
Sample Output

4

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>

using namespace std;

int a[10010];
int b[10010];

int main()
{
int n;
scanf("%d",&n);
int i,j;
for(i = 1;i<=n;i++)
scanf("%d",&a[i]);
b[1] = a[1];
int cnt = 1;
for(i = 2;i<=n;i++){
if(a[i]>b[cnt]) b[++cnt] = a[i];
else{
int k = lower_bound(b+1,b+cnt+1,a[i]) - b;
b[k] = a[i];
}
}
printf("%d",cnt);
return 0;
}


最长递增子序列LIS的O(nlogn)的求法

2016-08-17 10:57:06

LeetCode 最长递增子序列的O(nlogn)详解

2016-08-11 16:23:20

最长递增子序列O(nlogn)和O(n2)

2013-04-29 17:14:23

最长递增子序列（LIS）的O(NlogN)打印算法

2013-09-17 09:39:02

最长递增子序列O(NlogN)算法（leetcode 300. Longest Increasing Subsequence ）

2016-04-16 21:06:45

最长递增子序列 O nlgn时间复杂度

2015-08-28 15:17:24

单调递增最长子序列 O(nlogn)

2014-02-15 12:24:24

算法_动态规划_最长单调递增子序列问题（O(nlogn)的时间复杂度）

2016-04-07 23:23:46

POJ 1631(最长上升子序列 nlogn).

2014-08-03 21:06:00

找出n个数组成的最长单调递增子序列( 动态规划O(nlogn) )

2012-06-07 20:24:36