[EE261学习笔记] 2.傅里叶级数的意义

首先我们将矢量的“内积”或称“点积”的概念以类比的方式推广到复变函数
设函数 f f f g g g [ 0 , 1 ] [0,1] [0,1] 内平方可积,则我们定义函数 f f f g g g 的内积为:

( f , g ) = ∫ 0 1 f ( t ) g ( t ) ‾ d t (1) (f,g) = \int_0^1f(t)\overline{g(t)}dt \tag1 (f,g)=01f(t)g(t)dt(1)

在矢量运算中,我们有:
1.矢量长度 ∣ v ∣ = v 2 = ( v , v ) \left \lvert \bf{v} \right \rvert = \sqrt{\bf{v}^2} = \sqrt{(\bf{v},\bf{v})} v=v2 =(v,v)
2.勾股定理,当且仅当 ∣ v + u ∣ 2 = ∣ v ∣ 2 + ∣ u ∣ 2 \left\lvert \bf{v}+\bf{u}\right\rvert^2 =\left\lvert \bf{v}\right\rvert^2 + \left\lvert \bf{u}\right\rvert^2 v+u2=v2+u2 时,即 ( v , u ) = 0 (\bf{v},\bf{u}) = 0 (v,u)=0 时,矢量 v \bf{v} v u \bf{u} u 正交
矢量勾股定理

类比于矢量内积,再利用函数内积公式 ( 1 ) (1) (1),我们可以得到:
1.函数长度的平方 ∥ f ∥ 2 = ( f , f ) = ∫ 0 1 ∣ f ( t ) ∣ 2 d t \left \lVert f \right \rVert^2 = (f,f) = \int_0^1 \left \lvert f(t)\right \rvert^2 dt f2=(f,f)=01f(t)2dt
2.当且仅当 ∥ f + g ∥ 2 = ∥ f ∥ 2 + ∥ g ∥ 2 \left\lVert f+g\right\rVert^2 =\left\lVert f\right\rVert^2 + \left\lVert g\right\rVert^2 f+g2=f2+g2,即 ( f , g ) = 0 (f,g) = 0 (f,g)=0 时,函数 f f f g g g 正交

我们回忆一下周期为1的周期函数的傅里叶级数

f ( t ) = ∑ k = − ∞ ∞ f ^ ( k ) e 2 π i k t (2) f(t) = \sum_{k=-\infty}^\infty \hat{f}(k) e^{2\pi ikt} \tag2 f(t)=k=f^(k)e2πikt(2)

其中

f ^ ( k ) = ∫ 0 1 f ( t ) e − 2 π i k t d t (3) \hat{f}(k) = \int_0^1 f(t)e^{-2\pi ikt}dt \tag3 f^(k)=01f(t)e2πiktdt(3)

利用 ( 1 ) (1) (1) 式及上述函数正交性及函数长度的定义,容易得到:

( e 2 π i n t , e 2 π i m t ) = ∫ 0 1 e 2 π i n t e − 2 π i m t d t = ∫ 0 1 e 2 π i ( n − m ) t d t = { 0 , n ≠ m  (正交) 1 , n = m  (模长的平方为1) \begin{aligned} (e^{2\pi int}, e^{2\pi imt}) &= \int_0^1e^{2\pi int} e^{-2\pi imt}dt\\ & = \int_0^1e^{2\pi i(n-m)t}dt\\ & = \begin{cases} 0, & n \neq m \text{ (正交)}\\ 1, & n = m \text{ (模长的平方为1)} \end{cases} \end{aligned} (e2πint,e2πimt)=01e2πinte2πimtdt=01e2πi(nm)tdt={0,1,n=m (正交)n=m (模长的平方为1

这个计算结果表明:

  1. 在复平面上的傅里叶级数的表达式中, { e 2 π i k t } 均正交,其中 k ∈ ( − ∞ , ∞ ) (4) \text{在复平面上的傅里叶级数的表达式中,}\lbrace e^{2\pi ikt}\rbrace \text{均正交,其中}k\in (-\infty, \infty) \tag4 在复平面上的傅里叶级数的表达式中,{e2πikt}均正交,其中k(,)(4)

  2. { e 2 π i k t } 中的各项模长均为1,其中 k ∈ ( − ∞ , ∞ ) (5) \lbrace e^{2\pi ikt}\rbrace \text{中的各项模长均为1,其中}k\in (-\infty, \infty) \tag5 {e2πikt}中的各项模长均为1,其中k(,)(5)


我们再次回到矢量上来,假设我们有矢量 a \bf{a} a b \bf{b} b a \bf{a} a b \bf{b} b 的内积 ( a , b ) (\bf{a},\bf{b}) (a,b) 在几何中的意义是 a \bf{a} a b \bf{b} b 上的投影长度乘以 b \bf{b} b 的长度(或 a b \bf{a}\bf{b} ab 位置互换)

ab向量

b \bf{b} b 为单位向量(或称为基)时, ( a , b ) (\bf{a},\bf{b}) (a,b) 可以看作 a \bf{a} a b \bf{b} b 上的投影,或者说是矢量 a \bf{a} a 在基 b \bf{b} b 方向上的分量
比如,我们设 v \bf{v} v u \bf{u} u 为互相垂直的一对单位向量,则 ( a , v ) (\bf{a},\bf{v}) (a,v) ( a , u ) (\bf{a},\bf{u}) (a,u) 分别为 v \bf{v} v 方向和 u \bf{u} u 方向上的分量。在物理上,这种方法也称为矢量的正交分解。因此我们可以将 a \bf{a} a 写作

a = ( a , v ) v + ( a , u ) u (6) \bf{a} = (\bf{a},\bf{v})\bf{v}+(\bf{a},\bf{u})\bf{u}\tag6 a=(a,v)v+(a,u)u(6)

矢量分解

接下来我们利用(1)式计算以下内积:

( f , e 2 π i k t ) = ∫ 0 1 f ( t ) e 2 π i k t ‾ d t = ∫ 0 1 f ( t ) e − 2 π i k t d t = f ^ ( k ) (7) \begin{aligned} (f, e^{2\pi ikt}) &= \int_0^1f(t) \overline{e^{2\pi ikt}}dt\\ & = \int_0^1f(t) e^{-2\pi ikt}dt\\ & = \hat{f}(k)\tag7 \end{aligned} (f,e2πikt)=01f(t)e2πiktdt=01f(t)e2πiktdt=f^(k)(7)

( 5 ) (5) (5) 式我们知道 e − 2 π i k t e^{-2\pi ikt} e2πikt 的模长为1。类比矢量投影的性质,我们不难从上式看出:第 k k k 项傅里叶系数,就是函数对于第 k k k 项复指数的投影
运用 ( 7 ) (7) (7) 式,我们将傅里叶级数即 ( 2 ) (2) (2) 式改写可得:

f ( t ) = ∑ k = − ∞ ∞ f ^ ( k ) e 2 π i k t = ∑ k = − ∞ ∞ ( f , e 2 π i k t ) e 2 π i k t \begin{aligned} f(t) &= \sum_{k=-\infty}^\infty \hat{f}(k) e^{2\pi ikt}\\ &= \sum_{k=-\infty}^\infty (f, e^{2\pi ikt})e^{2\pi ikt} \end{aligned} f(t)=k=f^(k)e2πikt=k=(f,e2πikt)e2πikt

联系性质 ( 4 ) (4) (4) ( 5 ) (5) (5) 以及矢量的分量表达式 ( 6 ) (6) (6),我们发现上式可以理解为 f ( t ) f(t) f(t) 在基 { e 2 π i k t } \{e^{2\pi ikt}\} {e2πikt} 上的投影,再乘以基。

因此,傅里叶级数的一种解释方式是:将周期函数 f ( t ) f(t) f(t) 投影到正交基组 { e 2 π i k t } \{e^{2\pi ikt}\} {e2πikt} 上,再用这些分量重新写出 f ( t ) f(t) f(t)


最后,我们再证明一个重要的等式:瑞利等式
利用傅里叶级数式 ( 2 ) (2) (2)

∫ 0 1 ∣ f ( t ) ∣ 2 d t = ∑ k = − ∞ ∞ ∫ 0 1 ∣ f ^ ( k ) e 2 π i k t ∣ 2 d t = ∑ k = − ∞ ∞ ∫ 0 1 ∣ f ^ ( k ) ∣ 2 ∣ e 2 π i k t ∣ 2 d t = ∑ k = − ∞ ∞ ∣ f ^ ( k ) ∣ 2 ∫ 0 1 ∣ e 2 π i k t ∣ 2 d t = ∑ k = − ∞ ∞ ∣ f ^ ( k ) ∣ 2 (8) \begin{aligned} \int_0^1\left \lvert f(t)\right\rvert^2dt &= \sum_{k=-\infty}^\infty \int_0^1 \left \lvert \hat{f}(k) e^{2\pi ikt} \right \rvert^2 dt\\ &= \sum_{k=-\infty}^\infty \int_0^1 \left \lvert \hat{f}(k)\right \rvert^2 \left \lvert e^{2\pi ikt} \right \rvert^2 dt\\ &= \sum_{k=-\infty}^\infty \left \lvert \hat{f}(k)\right \rvert^2 \int_0^1 \left \lvert e^{2\pi ikt} \right \rvert^2 dt\\ & = \sum_{k=-\infty}^\infty \left \lvert \hat{f}(k)\right \rvert^2 \tag8 \end{aligned} 01f(t)2dt=k=01f^(k)e2πikt2dt=k=01f^(k)2e2πikt2dt=k=f^(k)201e2πikt2dt=k=f^(k)2(8)

( 8 ) (8) (8) 式表明了一个函数的长度的平方,与它的正交组成成分的平方和相等,这也是矢量的瑞利等式的扩展。
在工程中,我们常把 ( 8 ) (8) (8) 式的等式左边部分称为函数的能量,因此有了傅里叶级数,我们既可以在时域计算能量,也可以在频域计算能量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值