1. 什么是ZK?
ZooKeeper(简称ZK)是一种用于分布式应用程序的高性能协调服务。它在一个简单的界面中公开了常用服务 - 例如命名(naming),配置管理(configuration),
同步(synchronization)和组服务(group services)因此你不必从头开始编写它们。你可以使用现成的方法来实现共识(consensus),组管理(group management),
领导者选举(leader election)和在线协议(presence protocols)。您可以根据自己的特定需求进行构建。
官网:http://zookeeper.apache.org/
2. ZK担保(官方提到ZK能做到什么)
ZooKeeper非常快速而且非常简单。但是,由于其目标是构建更复杂的服务(如同步)的基础,因此它提供了一系列保证。这些是:
担保 | 解释 |
顺序一致性 | 客户端的更新将按发送顺序应用。 |
原子性 | 更新要么成功,要么失败。没有部分(局部)结果。 |
单系统映像 | 无论服务器连接到哪个服务器,客户端都将看到相同的服务视图。 |
可靠性 | 一旦应用了更新,它将从那时起持续到客户端覆盖更新。 |
及时性 | 系统的客户视图保证在特定的时间范围内是最新的。 |
3. ZK环境搭建
参照官网教程 http://zookeeper.apache.org/doc/current/zookeeperStarted.html
或者 https://blog.csdn.net/tlk20071/article/details/52028945
4. ZK相关的基础知识(※)
(1)会话(Session)
- Session 指的是 ZooKeeper 服务器与客户端会话。在 ZooKeeper 中,一个客户端连接是指客户端和服务器之间的一个 TCP 长连接。
- 客户端启动的时候,首先会与服务器建立一个 TCP 连接,从第一次连接建立开始,客户端会话的生命周期也开始了。
- 通过这个连接,客户端能够通过心跳检测与服务器保持有效的会话,也能够向 Zookeeper 服务器发送请求并接受响应,同时还能够通过该连接接收来自服务器的 Watch 事件通知。
- Session 的 sessionTimeout 值用来设置一个客户端会话(Session)的超时时间。当由于服务器压力太大、网络故障或是客户端主动断开连接等各种原因
导致客户端连接断开时,只要在 sessionTimeout 规定的时间内能够重新连接上集群中任意一台服务器,那么之前创建的会话仍然有效。 - 在为客户端创建会话之前,服务端首先会为每个客户端都分配一个 sessionID。由于 sessionID 是 Zookeeper 会话的一个重要标识,许多与会话相关的运行机制
都是基于这个 sessionID 的。因此,无论是哪台服务器为客户端分配的 sessionID,都务必保证全局唯一。 - 在实际的应用中,如果Client与Server之间的通信足够频繁,Session的维护就不需要其它额外的消息了。否则,ZooKeeper Client会每t/3 ms发一次心跳给Server,如果Client 2t/3 ms没收到来自Server的心跳回应,就会换到一个新的ZooKeeper Server上。这里t是用户配置的Session的超时时间。
(2)节点(znode)
虽然zookeeper的实现比较复杂,但是它提供的模型抽象却是非常简单的。Zookeeper提供一个多层级的节点命名空间(节点称为znode),每个节点都用一个以
●Regular ZNode: 常规型ZNode, 用户需要显式的创建、删除。
●Ephemeral ZNode: 临时型ZNode, 用户创建它之后,可以显式的删除,也可以在创建它的Session结
束后,由Z ooKeeper Server自动删除 ZNode还有一个Sequential的特性,如果创建的时候指定的话,
该ZNode的名字后面会自动Append一个不断增加的SequenceNo。
得Zookeeper不能用于存放大量的数据,每个节点的存放数据上限为1M。
有四种类型的znode:
- PERSISTENT-持久化目录节点:客户端与zookeeper断开连接后,该节点依旧存在。
- PERSISTENT_SEQUENTIAL-持久化顺序编号目录节点:客户端与zookeeper断开连接后,该节点依旧存在,只是Zookeeper给该节点名称进行顺序编号。
- EPHEMERAL-临时目录节点:客户端与zookeeper断开连接后,该节点被删除。
- EPHEMERAL_SEQUENTIAL-临时顺序编号目录节点:客户端与zookeeper断开连接后,该节点被删除,只是Zookeeper给该节点名称进行顺序编号。
(3)版本:
在前面提到,Zookeeper 的每个 ZNode 上都会存储数据,对应于每个 ZNode,Zookeeper 都会为其维护一个叫作 Stat 的数据结构。
Stat 中记录了这个 ZNode 的三个数据版本,分别是:
version(当前 ZNode 的版本)
cversion(当前 ZNode 子节点的版本)
aversion(当前 ZNode 的 ACL 版本)
(4)事件监听器(watcher)
ZooKeeper支持一种Watch操作,Client可以在某个ZNode上设置一个Watcher,来Watch该ZNode上的变化。如果该ZNode上有相应的变化,就会触发这个Watcher,把相应的事件通知给设置Watcher的Client。需要注意的是,ZooKeeper中的Watcher是一次性的,即触发一次就会被取消,如果想继续Watch的话,需要客户端重新设置Watcher。这个跟epoll里的oneshot模式有点类似。
(5)权限控制(ACL)
ZooKeeper 采用 ACL(AccessControlLists)策略来进行权限控制,类似于 UNIX 文件系统的权限控制。但传统的文件系统中,ACL分为两个维度,一个是属组,
一个是权限,子目录/文件默认继承父目录的ACL。而在Zookeeper中,node的ACL是没有继承关系的,是独立控制的。Zookeeper的ACL,可以从三个维度来理解:
一是scheme,二是user,三是permission,通常表示为scheme:id:permissions, 介绍如下:
- permission :(zookeeper定义了5中权限)
- CREATE (c): 创建子节点的权限。解释 :可以在在当前node下创建child node的权限
- READ (r): 获取节点数据和子节点列表的权限。解释 :可以获取当前node的数据,可以list当前node所有的child nodes的权限
- WRITE (w) : 更新节点数据的权限。解释 : 可以向当前node写数据的权限
- DELETE (d): 删除子节点的权限。解释 :可以删除当前的node的权限
- ADMIN (a) : 设置节点ACL的权限。解释 :可以设置当前node的permission的权限
其中尤其需要注意的是,CREATE和DELETE这两种权限都是针对子节点的权限控制。刚刚搭建好的 zookeeper 单机(or 集群)没有任何权限。
[zk: localhost:2181(CONNECTED) 11] getAcl / 'world,'anyone : rwadc #表示所有人都对这个节点有rwadc的权限
- scheme:(scheme对应于采用哪种方案来进行权限管理)
- world : 它下面只有一个id, 叫anyone, world:anyone代表任何人,zookeeper中对所有人有权限的结点就是属于world:anyone的
- auth : 它不需要id, 只要是通过authentication的user都有权限(zookeeper支持通过kerberos来进行authencation, 也支持username/password形式的authentication)
- digest : 它对应的id为username:BASE64(SHA1(password)),它需要先通过username:password形式的authentication
- ip : 它对应的id为客户机的IP地址,设置的时候可以设置一个ip段,比如ip:192.168.1.0/16, 表示匹配前16个bit的IP段
- super : 在这种scheme情况下,对应的id拥有超级权限,可以做任何事情(cdrwa)
(6)ZK提供的API接口:
操作 | 解释 |
创建 | create | 在树中的某个位置创建一个节点。例子: create /aaa bbb 创建一个aaa节点 值为bbb |
删除 | delete | 删除节点。例子:delete /aaa 注意若节点下没有子节点才可以删除。若存在子节点,那么先删除子节点。 |
获取数据 | get data | 从节点读取数据。例子:get /aaa 获取节点 |
设定数据 | set data | 将数据写入节点。例子:set /aaa bbb 1 设置aaa节点值为bbb,并且只有在版本为1的情况下生效,否则失败 |
存在 | exists | 测试某个位置是否存在节点 |
得到孩子 | get children | 检索节点的子节点列表 |
同步 | sync | 等待数据传播 |
程序设计 : 传统上,ZK 应用程序需要两个单元,一个维护连接,另一个监视程序。在此应用程序中,名为 Executor 的类维护 ZK 连接。而名为DataMonitor的类 监视 ZK 树中的数据。此外,Executor包含主线程并包含执行逻辑。它负责与用户进行的少量交互,以及与作为参数传递的exectuable程序的交互,以及根据znode的状态,(根据要求)关闭并重新启动。
Executor类和DataMonitor类:
Executor:它是程序的入口。负责初始化zookeeper、DataMonitor,把自己注册为DataMonitor的监听者,一旦DataMonitor监听到变化后,会通知它执行业务操作。
DataMonitor:他负责监控znode,发现znode变化后,通知listener执行业务逻辑,同时再次监控znode
5. ZK的特性
(1)、读、写(更新)模式
在ZooKeeper集群中,读可以从任意一个ZooKeeper Server读,这一点是保证ZooKeeper比较好的读性能的关键;写的请求会先Forwarder到Leader,然后由Leader来通过ZooKeeper中的原子广播协议,将请求广播给所有的Follower,Leader收到一半以上的写成功的Ack后,就认为该写成功了,就会将该写进行持久化,并告诉客户端写成功了。
(2)、WAL和Snapshot
和大多数分布式系统一样,ZooKeeper也有WAL(Write-Ahead-Log),对于每一个更新操作,ZooKeeper都会先写WAL, 然后再对内存中的数据做更新,然后向Client通知更新结果。另外,ZooKeeper还会定期将内存中的目录树进行Snapshot,落地到磁盘上,这个跟HDFS中的FSImage是比较类似的。这么做的主要目的,一当然是数据的持久化,二是加快重启之后的恢复速度,如果全部通过Replay WAL的形式恢复的话,会比较慢。
(3)、FIFO
对于每一个ZooKeeper客户端而言,所有的操作都是遵循FIFO顺序的,这一特性是由下面两个基本特性来保证的:一是ZooKeeper Client与Server之间的网络通信是基于TCP,TCP保证了Client/Server之间传输包的顺序;二是ZooKeeper Server执行客户端请求也是严格按照FIFO顺序的。
(4)、Linearizability
在ZooKeeper中,所有的更新操作都有严格的偏序关系,更新操作都是串行执行的,这一点是保证ZooKeeper功能正确性的关键
6、Leader的工作流程
(1).首先leader开始恢复数据和清除session
启动zk实例,建立请求处理链(Leader的请求处理链): PrepRequestProcessor->ProposalRequestProcessor- >CommitProcessor->Leader.ToBeAppliedRequestProcessor ->FinalRequestProcessor。
(2).得到一个新的epoch,标识一个新的leader , 并获得最大zxid(方便进行数据同步)。
(3).建立一个学习者接受线程(来接受新的followers的连接,follower连接后确定followers的zxvid号,来确定是需要对follower进行什么同步措施,比如是差异同步(diff),还是截断(truncate)同步,还是快照同步)。
(4) . 向follower建立一个握手过程leader->follower NEWLEADER消息,并等待直到多数server发送了ack。
(5) . Leader不断的查看已经同步了的follower数量,如果同步数量少于半数,则回到looking状态重新进行leaderElection过程,否则继续step5。
7、Follower工作流程
(1).启动zk实例,建立请求处理链:
FollowerRequestProcessor->CommitProcessor-
>FinalProcessor。
(2).follower首先会连接leader,并将zxid和id发给
leader。
(3) .接收NEWLEADER消息,完成握手过程。
(4) .同leader进行状态同步。
(5) .完成同步后,follower可以接收client
的连接。
(6) .接收到client的请求,根据请求类型
l 对于写操作, FollowerRequestProcessor会将该操作
作为LEADER.REQEST发给LEADER由LEADER发起投票。
l 对于读操作,则通过请求处理链的最后一环FinalProcessor将结果返回给客户端
对于observer的流程不再赘述,observer流程和Follower的唯一不同的地方就是observer不会参加leader发起的投票。
8、ZK的选主流程
当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。先介绍basic paxos流程:
(1) . 选举线程由当前Server发起选举的线程担任,其主要功能是对投票结果进行统计,并选出推荐的Server;
(2). 选举线程首先向所有Server发起一次询问(包括自己);
(3) . 选举线程收到回复后,验证是否是自己发起的询问(验证zxid是否一致),然后获取对方的id(myid),并存储到当前询问对象列表中,最后获取对方提议的leader相关信息(id,zxid),并将这些信息存储到当次选举的投票记录表中;
(4) . 收到所有Server回复以后,就计算出zxid最大的那个Server,并将这个Server相关信息设置成下一次要投票的Server;
(5) . 线程将当前zxid最大的Server设置为当前Server要推荐的Leader,如果此时获胜的Server获得n/2 + 1的Server票数, 设置当前推荐的leader为获胜的Server,将根据获胜的Server相关信息设置自己的状态,否则,继续这个过程,直到leader被选举出来。
通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1.
每个Server启动后都会重复以上流程。在恢复模式下,如果是刚从崩溃状态恢复的或者刚启动的server还会从磁盘快照中恢复数据和会话信息,zk会记录事务日志并定期进行快照,方便在恢复时进行状态恢复。选主的具体流程图如下所示:
fast paxos流程是在选举过程中,某Server首先向所有Server提议自己要成为leader,当其它Server收到提议以后,解决epoch和zxid的冲突,并接受对方的提议,然后向对方发送接受提议完成的消息,重复这个流程,最后一定能选举出Leader。其流程图如下所示:
选完leader以后,zk就进入状态同步过程。
1. leader等待server连接;
2 .Follower连接leader,将最大的zxid发送给leader;
3 .Leader根据follower的zxid确定同步点;
4 .完成同步后通知follower 已经成为uptodate状态;
5 .Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。
流程图如下所示:
9、ZK应用场景
(1). 名字服务(NameService)
分布式应用中,通常需要一套完备的命令机制,既能产生唯一的标识,又方便人识别和记忆。 我们知道,
每个ZNode都可以由其路径唯一标识,路径本身也比较简洁直观,另外ZNode上还可以存储少量数据,这些
都是实现统一的NameService的基础。下面以在HDFS中实现NameService为例,来说明实现NameService
的基本布骤:
● 目标:通过简单的名字来访问指定的HDFS机群
● 定义命名规则:这里要做到简洁易记忆。下面是一种可选的方案:
serviceScheme://][zkCluster]- [clusterName],比如hdfs://lgprc-example/表示基于lgprc ZooKeeper集群
的用来做example的HDFS集群
● 配置DNS映射: 将zkCluster的标识lgprc通过DNS解析到对应的ZooKeeper集群的地址
● 创建ZNode: 在对应的ZooKeeper上创建/NameService/hdfs/lgprc-example结点,将HDFS的配置文件存
储于该结点下
●用户程序要访问hdfs://lgprc-example/的HDFS集群,首先通过DNS找到lgprc的ZooKeeper机群的地址,
然后在ZooKeeper的/NameService/hdfs/lgprc-example结点中读取到HDFS的配置,进而根据得到的配置,
得到HDFS的实际访问入口
2. 配置管理(Configuration Management)
在分布式系统中,常会遇到这样的场景: 某个Job的很多个实例在运行,它们在运行时大多数配置项是相同
的,如果想要统一改某个配置,一个个实例去改,是比较低效,也是比较容易出错的方式。通过
ZooKeeper可以很好的解决这样的问题,下面的基本的步骤:
● 将公共的配置内容放到ZooKeeper中某个ZNode上,比如/service/common-conf。
● 所有的实例在启动时都会传入ZooKeeper集群的入口地址,并且在运行过程中Watch /service/common-
conf这个ZNode。
● 如果集群管理员修改了了common-conf,所有的实例都会被通知到,根据收到的通知更新自己的配置,
并继续Watch /service/common-conf。
3. 组员管理(Group Membership)
在典型的Master-Slave结构的分布式系统中,Master需要作为“总管”来管理所有的Slave, 当有Slave加
入,或者有Slave宕机,Master都需要感知到这个事情,然后作出对应的调整,以便不影响整个集群对外
提供服务。以HBase为例,HMaster管理了所有的RegionServer,当有新的RegionServer加入的时候,
HMaster需要分配一些Region到该RegionServer上去,让其提供服务;当有RegionServer宕机时,
HMaster需要将该RegionServer之前服务的Region都重新分配到当前正在提供服务的其它RegionServer上,
以便不影响客户端的正常访问。下面是这种场景下使用ZooKeeper的基本步骤:
● Master在ZooKeeper上创建/service/slaves结点,并设置对该结点的Watcher。
● 每个Slave在启动成功后,创建唯一标识自己的临时性(Ephemeral)结点/service/slaves/${slave_id},并
将自己地址(ip/port)等相关信息写入该结点。
● Master收到有新子结点加入的通知后,做相应的处理。
● 如果有Slave宕机,由于它所对应的结点是临时性结点,在它的Session超时后,ZooKeeper会自动删除
该结点。
● Master收到有子结点消失的通知,做相应的处理。
4. 简单互斥锁(Simple Lock)
我们知识,在传统的应用程序中,线程、进程的同步,都可以通过操作系统提供的机制来完成。但是在分布
式系统中,多个进程之间的同步,操作系统层面就无能为力了。这时候就需要像ZooKeeper这样的分布式的
协调(Coordination)服务来协助完成同步,下面是用ZooKeeper实现简单的互斥锁的步骤,这个可以和线程间
同步的mutex做类比来理解
● 多个进程尝试去在指定的目录下去创建一个临时性(Ephemeral)结点 /locks/my_lock。
● ZooKeeper能保证,只会有一个进程成功创建该结点,创建结点成功的进程就是抢到锁的进程,假设该进
程为A。
● 其它进程都对/locks/my_lock进行Watch。
● 当A进程不再需要锁,可以显式删除/locks/my_lock释放锁;或者是A进程宕机后Session超时,ZooKeeper
系统自动删除/locks/my_lock结点释放锁。此时,其它进程就会收到ZooKeeper的通知,并尝试去创建
/locks/my_lock抢锁,如此循环反复。
5. 互斥锁(Simple Lock without Herd Effect)
上一节的例子中有一个问题,每次抢锁都会有大量的进程去竞争,会造成羊群效应(Herd Effect),为了解决
这个问题,我们可以通过下面的步骤来改进上述过程:
● 每个进程都在ZooKeeper上创建一个临时的顺序结点(Ephemeral Sequential) /locks/lock_${seq}。
● ${seq}最小的为当前的持锁者(${seq}是ZooKeeper生成的Sequenctial Number)。
● 其它进程都对只watch比它次小的进程对应的结点,比如2 watch 1, 3 watch 2, 以此类推。
● 当前持锁者释放锁后,比它次大的进程就会收到ZooKeeper的通知,它成为新的持锁者,如此循环反复
这里需要补充一点,通常在分布式系统中用ZooKeeper来做Leader Election(选主)就是通过上面的机制来
实现的,这里的持锁者就是当前的“主”。
6. 读写锁(Read/Write Lock)
我们知道,读写锁跟互斥锁相比不同的地方是,它分成了读和写两种模式,多个读可以并发执行,但写和
读、写都互斥,不能同时执行行。利用ZooKeeper,在上面的基础上,稍做修改也可以实现传统的读写锁
的语义,下面是基本的步骤:
● 每个进程都在ZooKeeper上创建一个临时的顺序结点(Ephemeral Sequential) /locks/lock_${seq}。
● ${seq}最小的一个或多个结点为当前的持锁者,多个是因为多个读可以并发。
● 需要写锁的进程,Watch比它次小的进程对应的结点。
● 需要读锁的进程,Watch比它小的最后一个写进程对应的结点。
● 当前结点释放锁后,所有Watch该结点的进程都会被通知到,他们成为新的持锁者,如此循环反复。
7. 屏障(Barrier)
在分布式系统中,屏障是这样一种语义: 客户端需要等待多个进程完成各自的任务,然后才能继续往前进
行下一步。下用是用ZooKeeper来实现屏障的基本步骤:
● Client在ZooKeeper上创建屏障结点/barrier/my_barrier,并启动执行各个任务的进程。
● Client通过exist()来Watch /barrier/my_barrier结点。
● 每个任务进程在完成任务后,去检查是否达到指定的条件,如果没达到就啥也不做,如果达到了就把
/barrier/my_barrier结点删除。
● Client收到/barrier/my_barrier被删除的通知,屏障消失,继续下一步任务。
8. 双屏障(Double Barrier)
双屏障是这样一种语义: 它可以用来同步一个任务的开始和结束,当有足够多的进程进入屏障后,才开始
执行任务;当所有的进程都执行完各自的任务后,屏障才撤销。下面是用ZooKeeper来实现双屏障的基
本步骤:
进入屏障:
● Client Watch /barrier/ready结点, 通过判断该结点是否存在来决定是否启动任务。
● 每个任务进程进入屏障时创建一个临时结点/barrier/process/${process_id},然后检查进入屏障的
结点数是否达到指定的值,如果达到了指定的值,就创建一个/barrier/ready结点,否则继续等待。
● Client收到/barrier/ready创建的通知,就启动任务执行过程。
离开屏障:
● Client Watch /barrier/process,如果其没有子结点,就可以认为任务执行结束,可以离开屏障。
● 每个任务进程执行任务结束后,都需要删除自己对应的结点/barrier/process/${process_id}。