1091 N-自守数 (15分)
如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”。例如 3×92^2=25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守数。
本题就请你编写程序判断一个给定的数字是否关于某个 N 是 N-自守数。
输入格式:
输入在第一行中给出正整数 M(≤20),随后一行给出 M 个待检测的、不超过 1000 的正整数。
输出格式:
对每个需要检测的数字,如果它是 N-自守数就在一行中输出最小的 N 和 NK^2的值,以一个空格隔开;否则输出 No。注意题目保证 N<10。
输入样例:
3
92 5 233
输出样例:
3 25392
1 25
No
#include<iostream>
#include<string>
using namespace std;
int check(int num){
for (int i = 1; i < 10; i++){
int x = num*num*i;
if (num>=100){
int y = x % 1000;
if (y == num){
return i;
}
}
else if (num >= 10){
int y = x % 100;
if (y == num){
return i;
}
}
else{
int y = x % 10;
if (y == num){
return i;
}
}
}
return -1;
}
int main(){
int M = 0;
cin >> M;
for (int i = 0; i < M; i++){
int temp = 0;
cin >> temp;
int n = check(temp);
if (n != -1){
printf("%d %d\n",n,n*temp*temp);
}
else{
printf("No\n");
}
}
return 0;
}