机器学习
文章平均质量分 96
机器学习实战笔记
aabond
这个作者很懒,什么都没留下…
展开
-
机器学习小结之决策树
决策树(Decision Trees)是一种基于树结构的机器学习算法,它是近年来最常见的数据挖掘算法,可以用于分类和回归问题。它可以作为预测模型,从样本的观测数据推断出该样本的预测结果。按预测结果的差异,决策树学习可细分两类。分类树,其预测结果仅限于一组离散数值。树的每个分支对应一组由逻辑与连接的分类特征,而该分支上的叶节点对应由上述特征可以预测出的分类标签。回归树,其预测结果为连续值。决策树可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。原创 2023-06-23 21:21:06 · 3384 阅读 · 0 评论 -
机器学习小结之KNN算法
KNN(K-Nearest Neighbor)算法是一种最简单,也是一个很实用的机器学习的算法,在《机器学习实战》这本书中属于第一个介绍的算法。它属于基于实例的有监督学习算法,本身不需要进行训练,不会得到一个概括数据特征的模型,只需要选择合适的参数 K 就可以进行应用。KNN的目标是在训练数据中发现最佳的 K 个近邻,并根据这些近邻的标签来预测新数据的标签。每次使用 KNN 进行预测时,所有的训练数据都会参与计算。分类问题,同时天然可以处理多分类问题,比如根据音乐的特征,将其归类到不同的类型。原创 2023-05-04 10:21:20 · 1722 阅读 · 0 评论