Dijkstra算法可以求解带权图中最短路径。
算法思想:将所有节点分为两个区域,已知区域和未知区域。最开始的时候,将起点加入到已知区域,其他点加入未知区域,比较已知区域到未知区域的所有连线,最短的路线就是我们要找的最短路径,将该路线未知区域对应的点加入到已知区域,再比较已知区域到未知区域的所有连线,如此反复,直到最终找到目标点。
图解:假如我们要求A到G的最短路径。
红线左边为已知区域。图1,比较ab,ac, ad三条线的长度, 假设ac最短。将C点加入到已知区域,如图2所示。比较ab, ace, acf, acg, ad的长度,若acf最短。将F加入到已知区域,如图3。比较ab, ace, acfe, acfg, acg, ad的长度,若acfg最短。则最短路径就求出来了,即acfg。
补充:起始点到已知区域所有点的最短路径都是已知的了。我们可以将这个算法的结果保存到一颗树种,就叫它最短路径生成树吧。