LoRA是如何更新参数的

1、本质上,还是反向传播算法

在前向过程中,代入A、B的参数算出损失的

在反向过程,根据损失求导算法A,B参数的梯度,然后更新参数

2、核心公式

通过一个低秩增量\Delta W来调整预训练模型的原始权重W,而不是直接修改W本身。它的核心公式可以简单写成:

Weff=W+\Delta W=W+A\times B

W:预训练原始权重(冻结,不更新)

\Delta W:引入的低秩增量(dxk)

A:dxr矩阵,r\lld,k

B:  rxk矩阵

LoRA有哪些改进版本?

(1)LoRA+

目标:加速训练

基础:标准LoRA的升级

改进点:对A和B设置不同学习率,B的学习率远高于A的学习率

理论依据: 靠近输出的权重对梯度更敏感,需要大调整;输入侧应更稳定

优点:训练速度提升(最高达2倍),性能比标准LoRA高1%~3%

总结:

LoRA作为一种高效的大模型微调技术,通过低秩矩阵分解大幅降低参数量和计算资源要求,同时保持接近全微调的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值