递归神经网络之LSTM
LSTM
模型的核心由一个 LSTM 单元组成,其可以在某时刻处理一个词语,以及计算语句可能的延续性的概率。网络的存储状态由一个零矢量初始化并在读取每一个词语后更新。而且,由于计算上的原因,我们将以 batch_size 为最小批量来处理数据。
基础的伪代码就像下面这样:
lstm = rnn_cell.BasicLSTMCell(lstm_size)
# 初始化 LSTM 存储状态.
state = tf.zeros([batch_size, lstm.state_size])
loss = 0.0
for current_batch_of_words in words_in_dataset:
# 每次处理一批词语后更新状态值.
output, state = lstm(current_batch_of_words, state)
# LSTM 输出可用于产生下一个词语的预测
logits = tf.matmul(output, softmax_w) + softmax_b
probabilities = tf.nn.softmax(logits)
loss += loss_function(probabilities, target_words)
截断反向传播
为使学习过程易于处理,通常的做法是将反向传播的梯度在(按时间)展开的步骤上照一个固定长度(num_steps)截断。 通过在一次迭代中的每个时刻上提供长度为 num_steps 的输入和每次迭代完成之后反向传导,这会很容易实现。
一个简化版的用于计算图创建的截断反向传播代码:
# 一次给定的迭代中的输入占位符.
words = tf.placeholder(tf.int32, [batch_size, num_steps])
lstm = rnn_cell.BasicLSTMCell(lstm_size)
# 初始化 LSTM 存储状态.
initial_state = state = tf.zeros([batch_size, lstm.state_size])
for i in range(len(num_steps)):
# 每处理一批词语后更新状态值.
output, state = lstm(words[:, i], state)
# 其余的代码.
# ...
final_state = state
下面展现如何实现迭代整个数据集:
# 一个 numpy 数组,保存每一批词语之后的 LSTM 状态.
numpy_state = initial_state.eval()
total_loss = 0.0
for current_batch_of_words in words_in_dataset:
numpy_state, current_loss = session.run([final_state, loss],
# 通过上一次迭代结果初始化 LSTM 状态.
feed_dict={initial_state: numpy_state, words: current_batch_of_words})
total_loss += current_loss
输入
在输入 LSTM 前,词语 ID 被嵌入到了一个词向量。这种方式允许模型高效地表示词语,也便于写代码:
# embedding_matrix 张量的形状是: [vocabulary_size, embedding_size]
word_embeddings = tf.nn.embedding_lookup(embedding_matrix, word_ids)
嵌入的矩阵会被随机地初始化,模型会学会通过数据分辨不同词语的意思。
多个 LSTM 层堆叠
要想给模型更强的表达能力,可以添加多层 LSTM 来处理数据。第一层的输出作为第二层的输入,以此类推。
类 MultiRNNCell 可以无缝的将其实现:
lstm = rnn_cell.BasicLSTMCell(lstm_size)
stacked_lstm = rnn_cell.MultiRNNCell([lstm] * number_of_layers)
initial_state = state = stacked_lstm.zero_state(batch_size, tf.float32)
for i in range(len(num_steps)):
# 每次处理一批词语后更新状态值.
output, state = stacked_lstm(words[:, i], state)
# 其余的代码.
# ...
final_state = state