向量旋转公式

 V1( x1, y1, z1)·V2(x2, y2, z2) = x1x2 + y1y2 + z1*z2.

 (x1,y1,z1)X (x2,y2,z2)= (y1z2-y2z1, z1x2-z2y1, x1y2-x2y1) 

在二维坐标系中,一个位置向量的旋转公式可以由三角函数的几何意义推出。

比如上图所示是位置向量R逆时针旋转角度B前后的情况。

      在左图中,我们有关系:

  x0 = |R| * cosA       =>          cosA = x0 / |R|

  y0 = |R| * sinA        =>          sinA = y0 / |R|

   在右图中,我们有关系:

  x1 = |R| * cos(A+B)

  y1 = |R| * sin(A+B)

  其中(x1, y1)就是(x0, y0)旋转角B后得到的点,也就是位置向量R最后指向的点。我们展开cos(A+B)和sin(A+B),得到:

  x1 = |R| * (cosAcosB - sinAsinB)

  y1 = |R| * (sinAcosB + cosAsinB)

  现在把  cosA = x0 / |R| 和 sinA = y0 / |R|  代入上面的式子,得到:

x1 = |R| *(x0 * cosB / |R| - y0 * sinB / |R|)=>  x1 = x0 * cosB - y0 * sinB

y1 = |R| *(y0 * cosB / |R| + x0 * sinB / |R|)=>y1 = x0 * sinB + y0 * cosB

  这样我们就得到了二维坐标下向量围绕圆点的逆时针旋转公式。顺时针旋转就把角度变为负:

  x1 = x0 * cos(-B) - y0 * sin(-B) =>  x1 = x0 * cosB + y0 * sinB

  y1 = x0 * sin(-B) + y0 * cos(-B)=>  y1 = -x0 * sinB + y0 * cosB

  现在我要把这个旋转公式写成矩阵的形式,有一个概念我简单提一下,平面或空间里的每个线性变换(这里就是旋转变换)都对应一个矩阵,叫做变换矩阵。对一个点实施线性变换就是通过乘上该线性变换的矩阵完成的。好了,打住,不然就跑题了。

所以二维旋转变换矩阵就是:

                   [cosA  sinA]          [cosA –sinA]                                          

           [-sinA cosA] 或者  [sinA cosA]

我们对向量进行旋转变换可以通过矩阵完成,比如我要向量(x, y)绕原点逆时针旋转角度A:

 [x, y] x  [cosA  sinA] = [x*cosA-y*sinA  x*sinA+y*cosA]

                                  [-sinA cosA]

      旋转后的向量为:[x*cosA-y*sinA  x*sinA+y*cosA]
————————————————
版权声明:本文为CSDN博主「NoEndForLearning」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/zhinanpolang/article/details/82912325

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值