基于矩阵分解的推荐算法(java代码实现)

目前推荐系统中用的最多的就是矩阵分解方法,在Netflix Prize推荐系统大赛中取得突出效果。以用户-项目评分矩阵为例,矩阵分解就是预测出评分矩阵中的缺失值,然后根据预测值以某种方式向用户推荐。常见的矩阵分解方法有基本矩阵分解(basic MF),正则化矩阵分解)(Regularized MF),基于概率的矩阵分解(PMF)等。今天以“用户-项目评分矩阵R(N×M)”说明三种分解方式的原理以及应用。
这里写图片描述
用户-项目评分矩阵
Basic MF:
Basic MF是最基础的分解方式,将评分矩阵R分解为用户矩阵U和项目矩阵S, 通过不断的迭代训练使得U和S的乘积越来越接近真实矩阵,矩阵分解过程如图:
矩阵分解过程
这里写图片描述
预测值接近真实值就是使其差最小,这是我们的目标函数,然后采用梯度下降的方式迭代计算U和S,它们收敛时就是分解出来的矩阵。我们用损失函数来表示误差(等价于目标函数):
损失函数 公式1
这里写图片描述
公式1中R_ij是评分矩阵中已打分的值,U_i和S_j相当于未知变量。为求得公式1的最小值,相当于求关于U和S二元函数的最小值(极小值或许更贴切)。通常采用梯度下降的方法:
梯度下降
这里写图片描述
学习速率是学习速率,表示迭代的步长。其值为1.5时,通常以震荡形式接近极值点;若<1迭代单调趋向极值点;若>2围绕极值逐渐发散,不会收敛到极值点。具体取什么值要根据实验经验。

Regularized MF

正则化矩阵分解是Basic MF的优化,解决MF造成的过拟合问题。其不是直接最小化损失函数,而是在损失函数基础上增加规范化因子,将整体作为损失函数。
这里写图片描述

红线表示正则化因子,在求解U和S时,仍然采用梯度下降法,此时迭代公式变为:(图片截取自相关论文,S和V等价)
梯度下降
这里写图片描述
梯度下降结束条件࿱

  • 2
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
以下是一个 Java 实现矩阵分解推荐算法代码示例: ``` import java.util.*; import java.io.*; public class MatrixFactorization { int numUsers; int numItems; double[][] userFactors; double[][] itemFactors; double learningRate; double regularization; int numIterations; public MatrixFactorization(int numUsers, int numItems, int numFactors, double learningRate, double regularization, int numIterations) { this.numUsers = numUsers; this.numItems = numItems; userFactors = new double[numUsers][numFactors]; itemFactors = new double[numItems][numFactors]; this.learningRate = learningRate; this.regularization = regularization; this.numIterations = numIterations; } public void train(int[][] ratings) { for (int iter = 0; iter < numIterations; iter++) { for (int u = 0; u < numUsers; u++) { for (int i = 0; i < numItems; i++) { if (ratings[u][i] > 0) { double prediction = 0; for (int f = 0; f < userFactors[u].length; f++) { prediction += userFactors[u][f] * itemFactors[i][f]; } double error = ratings[u][i] - prediction; for (int f = 0; f < userFactors[u].length; f++) { userFactors[u][f] += learningRate * (error * itemFactors[i][f] - regularization * userFactors[u][f]); itemFactors[i][f] += learningRate * (error * userFactors[u][f] - regularization * itemFactors[i][f]); } } } } } } public double[][] getUserFactors() { return userFactors; } public double[][] getItemFactors() { return itemFactors; } public static void main(String[] args) { int numUsers = 5; int numItems = 4; int[][] ratings = {{5, 3, 0, 1}, {4, 0, 0, 1}, {1, 1, 0, 5}, {0, 0, 4, 4}, {0, 1, 5, 4}}; int numFactors = 2; double learningRate = 0.01; double regularization = 0.1; int numIterations = 100; MatrixFactorization mf = new MatrixFactorization(numUsers, numItems, numFactors, learningRate, regularization, numIterations); mf.train(ratings); double[][] userFactors = mf.getUserFactors(); double[][] itemFactors = mf.getItemFactors(); System.out.println("User factors:"); for (int u = 0; u < numUsers; u++) { System.out.print("User " + u + ": "); for (int f = 0; f < numFactors; f++) { System.out.print(userFactors[u][f] + " "); } System.out.println(); } System.out.println("Item factors:"); for (int i = 0; i < numItems; i++) { System.out.print("Item " + i + ": "); for (int f = 0; f < numFactors; f++) { System.out.print(itemFactors[i][f] + " "); } System.out.println(); } } } ``` 该代码实现了基于梯度下降的矩阵分解推荐算法。在本例中,我们使用一个大小为 5 x 4 的评分矩阵作为输入,其中每行代表一个用户,每列代表一个物品。为了简化问题,使用了隐含因子数量为 2 的模型。在模型训练期间,每次迭代都会使用随机梯度下降更新用户矩阵和物品矩阵的值,以尝试最小化预测值与实际值之间的误差。在训练完成后,输出用户因子矩阵和物品因子矩阵的值,以便进行推荐。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值