532. 数组中的K-diff数对

给定一个整数数组和一个整数 k, 你需要在数组里找到不同的 k-diff 数对。这里将 k-diff 数对定义为一个整数对 (i, j), 其中 i  j 都是数组中的数字,且两数之差的绝对值是 k.

示例 1:

输入: [3, 1, 4, 1, 5], k = 2
输出: 2
解释: 数组中有两个 2-diff 数对, (1, 3) 和 (3, 5)。
尽管数组中有两个1,但我们只应返回不同的数对的数量。

示例 2:

输入:[1, 2, 3, 4, 5], k = 1
输出: 4
解释: 数组中有四个 1-diff 数对, (1, 2), (2, 3), (3, 4) 和 (4, 5)。

示例 3:

输入: [1, 3, 1, 5, 4], k = 0
输出: 1
解释: 数组中只有一个 0-diff 数对,(1, 1)。

注意:

  1. 数对 (i, j) 和数对 (j, i) 被算作同一数对。
  2. 数组的长度不超过10,000。
  3. 所有输入的整数的范围在 [-1e7, 1e7]。
class Solution {
public:
    int findPairs(vector<int>& nums, int k) {
        //执行用时: 32 ms, 在K-diff Pairs in an Array的C++提交中击败了70.65% 的用户
        sort(nums.begin(),nums.end());
        vector<int> vec;
        
        for(int i=0,j=i+1;i<nums.size();i++)
        {
            if(j>=nums.size())
            {
                j=i+2;
                continue;
            }
            if(nums[j]-nums[i]==k)
            {
                vec.push_back(nums[i]);
                j=i+2;
            }
            else if(nums[j]-nums[i]<k)
            {
                j++;
                i--;
            }
            else if(nums[j]-nums[i]>k)
                j=i+2;
        }

        for(int i=1;i<vec.size();i++)
            if(vec[i]==vec[i-1])
                vec.erase(vec.begin()+(i--));
        
        return vec.size();
        /*
        //执行用时: 736 ms, 在K-diff Pairs in an Array的C++提交中击败了8.61% 的用户
        sort(nums.begin(),nums.end());
        vector<int> vec;
        
        for(int i=0;i<nums.size();i++)
            for(int j=i+1;j<nums.size();j++)
                if(nums[j]-nums[i]==k)
                    vec.push_back(nums[i]);

        for(int i=1;i<vec.size();i++)
            if(vec[i]==vec[i-1])
                vec.erase(vec.begin()+(i--));
        
        return vec.size();
        */
    }
};

 

这行代码的作用是计算每个像素点与每个聚类簇中心点的欧几里得距离。其中,img 是原始的图像数据,reshape(-1, 3) 的作用是将图像数据扁平化为一维数组,每个元素表示一个像素点的 RGB 三个通道的值。mu 是当前的聚类中心坐标,它的形状为 (k, 3),表示有 k 个聚类中心,每个聚类中心有 3 个坐标值。 具体来说,代码中 (img.reshape(-1, 3))[:, np.newaxis] 的作用是将扁平化后的图像数据变形为二维数组,每一行表示一个像素点的 RGB 三个通道的值。然后通过广播机制,将形状为 (1, 3) 的 mu 数组扩展为形状为 (k, 3) 的数组。这样,就可以计算每个像素点与每个聚类中心的欧几里得距离,结果保存在 diff 变量中。 重新写一下可以是这样的: ``` img_reshaped = img.reshape(-1, 3) diff = np.zeros((img_reshaped.shape[0], mu.shape[0])) for i in range(mu.shape[0]): diff[:, i] = np.sqrt(np.sum((img_reshaped - mu[i])**2, axis=1)) ``` 这段代码首先将扁平化后的图像数据 img 变形为形状为 (n_pixels, 3) 的二维数组 img_reshaped,其中 n_pixels 表示像素点的数目。然后创建一个形状为 (n_pixels, k) 的零数组 diff,用于存储每个像素点与每个聚类中心的欧几里得距离。接着,通过 for 循环遍历每个聚类中心,计算每个像素点与该聚类中心的欧几里得距离,并存储在 diff 的相应位置上。其中,np.sqrt 函数用于计算欧几里得距离的平方根。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值