描述
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
1.对于该题的最近的公共祖先定义:对于有根树T的两个节点p、q,最近公共祖先LCA(T,p,q)表示一个节点x,满足x是p和q的祖先且x的深度尽可能大。在这里,一个节点也可以是它自己的祖先.
2.二叉搜索树是若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值; 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值
3.所有节点的值都是唯一的。
4.p、q 为不同节点且均存在于给定的二叉搜索树中。
数据范围:
3<=节点总数<=10000
0<=节点值<=10000
如果给定以下搜索二叉树: {7,1,12,0,4,11,14,#,#,3,5},如下图:
示例1
输入:{7,1,12,0,4,11,14,#,#,3,5},1,12
返回值:7
说明:节点1 和 节点12的最近公共祖先是7
示例2
输入:{7,1,12,0,4,11,14,#,#,3,5},12,11
返回值:12
说明:因为一个节点也可以是它自己的祖先.所以输出12
代码
/**
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
class Solution {
public:
/**
*
* @param root TreeNode类
* @param o1 int整型
* @param o2 int整型
* @return int整型
*/
int lowestCommonAncestor(TreeNode* root, int o1, int o2) {
// write code here
if (root == NULL) {
return -1;
}
TreeNode *res = LCA(root, o1, o2);
return res == NULL ? -1 : res->val;
}
TreeNode* LCA(TreeNode *root, int o1, int o2) {
if (root->val == o1 || root->val == o2) {
return root;
}
TreeNode *resL = NULL, *resR = NULL;
if (root->left != NULL) {
resL = LCA(root->left, o1, o2);
}
if (root->right != NULL) {
resR = LCA(root->right, o1, o2);
}
// 在根结点两边
if (resL != NULL && resR != NULL) {
return root;
}
return resL != NULL ? resL : resR;
}
};