问题:给定一个由n个圆盘组成的塔,这些圆盘按照大小递减的方式套在三根桩柱中的一根上。我们的目的是要将整个塔移动到另一根桩柱上,每次只能移动一个圆盘,且较大的圆盘在移动过程中不能放置在较小的圆盘上面。
这里写图片描述
思路: 显而易见,当圆盘的数目比较小时,很好移动。当n为1时,直接将圆盘移到B柱上;当n为2时,就需要借助另外一根桩柱,首先将圆盘1移到C柱上(假设另外一个为C柱),将圆盘2移动到B柱上,再将圆盘一移动到B柱上,一共要移动3步(可以自行模拟一下);当n为3时,需要7步;
当n的值很大时,需要首先借助B柱,将上面n-1个盘移到C柱上,再将第n个盘移到B柱,再借助A柱,将C柱上的n-1个盘移到B柱上,完成移动。
这是一个递归的过程,移动n个盘就要先移动n-1个盘,移动n-1个盘就要先移动n-2个盘,一直到只有一个盘。
计算:首先我们来计算移动n个盘需要移动多少次。
1个盘—-1次 2的1次方减1
2个盘—-3次 2的2次方减1
3个盘—-7次 2的3次方减1
一直到n。
发现规律了吗?移动n个盘需要移动2的n次方减1
递归公式为:这里写图片描述(证明方法为数学归纳法)
心得: 那么类似河内塔这样具有递归性质的问题解题步骤如下:
1.研究小的情形。
2.对有意义的量求出数学表达式并给出证明。
3.对数学表达式求出封闭形式并予以证明。
java完整代码:
packag