目录标题
59.按之字形顺序打印二叉树!
- 题目描述
请实现一个函数按照之字形打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右至左的顺序打印,第三行按照从左到右的顺序打印,其他行以此类推。
- 解题思路
import java.util.*;//导入的写法,多的可以用*
/*
public class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
*/
public class Solution {
public static ArrayList<ArrayList<Integer>> Print(TreeNode pRoot) {
int layer = 1;
//s1存奇数层节点
Stack<TreeNode> s1 = new Stack<TreeNode>();
s1.push(pRoot);
//s2存偶数层节点
Stack<TreeNode> s2 = new Stack<TreeNode>();
ArrayList<ArrayList<Integer>> list = new ArrayList<ArrayList<Integer>>();
while (!s1.empty() || !s2.empty()) {
if (layer%2 != 0) {
ArrayList<Integer> temp = new ArrayList<Integer>();
while (!s1.empty()) {
TreeNode node = s1.pop();
if(node != null) {
temp.add(node.val);
System.out.print(node.val + " ");
s2.push(node.left);
s2.push(node.right);
}
}
if (!temp.isEmpty()) {
list.add(temp);
layer++;
System.out.println();
}
} else {
ArrayList<Integer> temp = new ArrayList<Integer>();
while (!s2.empty()) {
TreeNode node = s2.pop();
if(node != null) {
temp.add(node.val);
System.out.print(node.val + " ");
s1.push(node.right);
s1.push(node.left);
}
}
if (!temp.isEmpty()) {
list.add(temp);
layer++;
System.out.println();
}
}
}
return list;
}
}
60. 把二叉树打印成多行!
- 题目描述
从上到下按层打印二叉树,同一层结点从左至右输出。每一层输出一行。
- 解题思路
两种思路学习~
//用递归做的
public class Solution {
ArrayList<ArrayList<Integer> > Print(TreeNode pRoot) {
ArrayList<ArrayList<Integer>> list = new ArrayList<>();
depth(pRoot, 1, list);
return list;
}
private void depth(TreeNode root, int depth, ArrayList<ArrayList<Integer>> list) {
if(root == null) return;
if(depth > list.size())
list.add(new ArrayList<Integer>());
list.get(depth -1).add(root.val);
depth(root.left, depth + 1, list);
depth(root.right, depth + 1, list);
}
}
队列和树做的。
import java.util.ArrayList;
import java.util.*;
/*
public class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
*/
public class Solution {
ArrayList<ArrayList<Integer> > Print(TreeNode pRoot) {
ArrayList<ArrayList<Integer>> ret = new ArrayList<ArrayList<Integer>>();
ArrayList<Integer> tmp = new ArrayList<Integer>();
LinkedList<TreeNode> q = new LinkedList<TreeNode>();
if(pRoot == null)
return ret;
q.add(pRoot);
int now = 1, next = 0;
while(!q.isEmpty()) {
TreeNode t = q.remove();
now--;
tmp.add(t.val);
if(t.left != null) {
q.add(t.left);
next++;
}
if(t.right != null) {
q.add(t.right);
next++;
}
if(now == 0) {
ret.add(new ArrayList<Integer>(tmp));
tmp.clear();
now = next;
next = 0;
}
}
return ret;
}
}
61. 序列化二叉树
- 题目描述
请实现两个函数,分别用来序列化和反序列化二叉树
二叉树的序列化是指:把一棵二叉树按照某种遍历方式的结果以某种格式保存为字符串,从而使得内存中建立起来的二叉树可以持久保存。序列化可以基于先序、中序、后序、层序的二叉树遍历方式来进行修改,序列化的结果是一个字符串,序列化时通过 某种符号表示空节点(#),以 ! 表示一个结点值的结束(value!)。
二叉树的反序列化是指:根据某种遍历顺序得到的序列化字符串结果str,重构二叉树。
- 解题思路
链接:https://www.nowcoder.com/questionTerminal/cf7e25aa97c04cc1a68c8f040e71fb84?answerType=1&f=discussion
来源:牛客网
//递归方法(前序)
public class Solution {
//String str = "";
private int index = -1;
String Serialize(TreeNode root) {
if(root == null){
return "";
}
StringBuilder sb = new StringBuilder();
SerializeHelp(root, sb);
return sb.toString();
}
//主要实现前序遍历,然后加上#和!
void SerializeHelp(TreeNode root, StringBuilder sb){
if(root == null){
sb.append("#!");
return;
}
sb.append(root.val).append("!");
SerializeHelp(root.left, sb);
SerializeHelp(root.right, sb);
}
TreeNode Deserialize(String str) {
if(str == null || str == ""){
return null;
}
String[] strs = str.split("!"); //利用结束符分割出每个节点的值便于处理。
return DeserializeHelp(strs);
}
TreeNode DeserializeHelp(String[] strs){
index++;
if(!strs[index].equals("#")){ //按顺序添加各节点。
TreeNode node = new TreeNode(Integer.parseInt(strs[index]));
node.left = DeserializeHelp(strs);
node.right = DeserializeHelp(strs);
return node;
}
return null;
}
}
62. 二叉搜索树的第k个结点
- 题目描述
给定一棵二叉搜索树,请找出其中的第k小的结点。例如, (5,3,7,2,4,6,8) 中,按结点数值大小顺序第三小结点的值为4。
- 解题思路
//思路:二叉搜索树按照中序遍历的顺序打印出来正好就是排序好的顺序。
// 所以,按照中序遍历顺序找到第k个结点就是结果。
public class Solution {
int index = 0; //计数器
TreeNode KthNode(TreeNode root, int k)
{
if(root != null){ //中序遍历寻找第k个
TreeNode node = KthNode(root.left,k);
if(node != null)
return node;
index ++;
if(index == k)
return root;
node = KthNode(root.right,k);
if(node != null)
return node;
}
return null;
}
}
63. 数据流中的中位数!
- 题目描述
如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。
- 解题思路
一个不太常用的知识点 优先队列,多理解几遍别人的提示。。
需要求的是中位数,如果我将 1 2 3 4 5 6 7 8定为最终的数据流,此时的中位数是4+5求均值。
为什么是4,为什么是5 利用队列我们就可以看得很清楚,4是前半部分最大的值,肯定是维系在大顶堆 而5是后半部分的最小值,肯定是维系在小顶堆。
问题就好理解了: 使用小顶堆存大数据,使用大顶堆存小数据。这样堆顶一取出就是中位数了。
代码如下:代码中奇数时刻大顶堆存值,所以遇到奇数时刻,大顶堆直接弹出就是中位数
import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Queue;
public class Solution {
private int cnt = 0;
private PriorityQueue<Integer> low = new PriorityQueue<>();
// 默认维护小顶堆
private PriorityQueue<Integer> high = new PriorityQueue<>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2.compareTo(o1);
}
});
public void Insert(Integer num) {
// 数量++
cnt++;
// 如果为奇数的话
if ((cnt & 1) == 1) {
// 由于奇数,需要存放在大顶堆上
// 但是呢,现在你不知道num与小顶堆的情况
// 小顶堆存放的是后半段大的数
// 如果当前值比小顶堆上的那个数更大
if (!low.isEmpty() && num > low.peek()) {
// 存进去
low.offer(num);
// 然后在将那个最小的吐出来
num = low.poll();
} // 最小的就放到大顶堆,因为它存放前半段
high.offer(num);
} else {
// 偶数的话,此时需要存放的是小的数
// 注意无论是大顶堆还是小顶堆,吐出数的前提是得有数
if (!high.isEmpty() && num < high.peek()) {
high.offer(num);
num = high.poll();
} // 大数被吐出,小顶堆插入
low.offer(num);
}
}
public Double GetMedian() {// 表明是偶数
double res = 0;
// 奇数
if ((cnt & 1) == 1) {
res = high.peek();
} else {
res = (high.peek() + low.peek()) / 2.0;
}
return res;
}
}
注意:
如何使PriorityQueue从大到小排序,因为PriorityQueue默认是从小到大排序,我们根据更改comparator这个比较器,从而实现从大到小的排序。
Comparator<Integer> comparator = new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2.compareTo(o1);
}
};
//从大到小: return o2.compareTo(o1);
//从小到大: return o1.compareTo(o2);
64. 滑动窗口的最大值!
- 题目描述
给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5};
针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1},
{2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1},
{2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。
- 解题思路
没看懂题目,惭愧。。。
65. 矩阵中的路径!
-
题目描述
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。 例如
矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。 -
解题思路
回溯
基本思想:
0.根据给定数组,初始化一个标志位数组,初始化为false,表示未走过,true表示已经走过,不能走第二次
1.根据行数和列数,遍历数组,先找到一个与str字符串的第一个元素相匹配的矩阵元素,进入judge
2.根据i和j先确定一维数组的位置,因为给定的matrix是一个一维数组
3.确定递归终止条件:越界,当前找到的矩阵值不等于数组对应位置的值,已经走过的,这三类情况,都直接false,说明这条路不通
4.若k,就是待判定的字符串str的索引已经判断到了最后一位,此时说明是匹配成功的
5.下面就是本题的精髓,递归不断地寻找周围四个格子是否符合条件,只要有一个格子符合条件,就继续再找这个符合条件的格子的四周是否存在符合条件的格子,直到k到达末尾或者不满足递归条件就停止。
6.走到这一步,说明本次是不成功的,我们要还原一下标志位数组index处的标志位,进入下一轮的判断。
public class Solution {
public boolean hasPath(char[] matrix, int rows, int cols, char[] str)
{
//标志位,初始化为false
boolean[] flag = new boolean[matrix.length];
for(int i=0;i<rows;i++){
for(int j=0;j<cols;j++){
//循环遍历二维数组,找到起点等于str第一个元素的值,再递归判断四周是否有符合条件的----回溯法
if(judge(matrix,i,j,rows,cols,flag,str,0)){
return true;
}
}
}
return false;
}
//judge(初始矩阵,索引行坐标i,索引纵坐标j,矩阵行数,矩阵列数,待判断的字符串,字符串索引初始为0即先判断字符串的第一位)
private boolean judge(char[] matrix,int i,int j,int rows,int cols,boolean[] flag,char[] str,int k){
//先根据i和j计算匹配的第一个元素转为一维数组的位置
int index = i*cols+j;
//递归终止条件
if(i<0 || j<0 || i>=rows || j>=cols || matrix[index] != str[k] || flag[index] == true)
return false;
//若k已经到达str末尾了,说明之前的都已经匹配成功了,直接返回true即可
if(k == str.length-1)
return true;
//要走的第一个位置置为true,表示已经走过了
flag[index] = true;
//回溯,递归寻找,每次找到了就给k加一,找不到,还原
if(judge(matrix,i-1,j,rows,cols,flag,str,k+1) ||
judge(matrix,i+1,j,rows,cols,flag,str,k+1) ||
judge(matrix,i,j-1,rows,cols,flag,str,k+1) ||
judge(matrix,i,j+1,rows,cols,flag,str,k+1) )
{
return true;
}
//走到这,说明这一条路不通,还原,再试其他的路径
flag[index] = false;
return false;
}
}
66. 机器人的运动范围
- 题目描述
地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。
例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8
= 19。请问该机器人能够达到多少个格子?
- 解题思路
四个方向迭代,每个位置计算是否满足和小于k(调用了sum),相加位置数量。
public class Solution {
public int movingCount(int threshold, int rows, int cols) {
int flag[][] = new int[rows][cols]; //记录是否已经走过
return helper(0, 0, rows, cols, flag, threshold);
}
private int helper(int i, int j, int rows, int cols, int[][] flag, int threshold) {
if (i < 0 || i >= rows || j < 0 || j >= cols || numSum(i) + numSum(j) > threshold || flag[i][j] == 1) return 0;
flag[i][j] = 1;
return helper(i - 1, j, rows, cols, flag, threshold)
+ helper(i + 1, j, rows, cols, flag, threshold)
+ helper(i, j - 1, rows, cols, flag, threshold)
+ helper(i, j + 1, rows, cols, flag, threshold)
+ 1;
}
private int numSum(int i) {
int sum = 0;
do{
sum += i%10;
}while((i = i/10) > 0);
return sum;
}
}