1.熵值法原理
熵值法是一种客观赋权法,其根据各项指标观测值所提供的信息的大小来确定指标权重。设有m个待评方案,n项评价指标,形成原始指标数据矩阵X=(xij)m×n,对于某项指标xj,指标值xij的差距越大,则该指标在综合评价中所起的作用越大;如果某项指标的指标值全部相等,则该指标在综合评价中不起作用。
在信息论中,熵是对不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性就越大,熵也越大.根据熵的特性,我们可以通过计算熵值来判断一个方案的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大!因此,可根据各项指标的变异程度,利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据!
2.算法实现过程
3.熵值法的优缺点
优点:熵值法是根据各项指标指标值的变异程度来确定指标权数的,这是一种客观赋权法,避免了人为因素带来的偏差。
缺点:忽略了指标本身重要程度,有时确定的指标权数会与预期的结果相差甚远,同时熵值法不能减少评价指标的维数!
4.案例
下表是购买轿车的一个决策矩阵,给出了四个方案供我们进行选择,每个方案中均有相同的六个属性,假设油耗和费用为负向指标(越小越好)用-1表示,其它均为正向指标(越大越好)用1表示,我们需要利用熵值法求出各属性的权重,以及每个方案的综合分数。
指标属性 | -1 | 1 | -1 | 1 | 1 | 1 |
方案 | 油耗 | 功率 | 费用 | 安全性 | 维护性 | 操作性 |
本田 | 5 | 1.4 | 6 | 3 | 5 | 7 |
奥迪 | 9 | 2 | 30 | 7 | 5 | 9 |
桑塔纳 | 8 | 1.8 | 11 | 5 | 7 | 5 |
别克 | 12 | 2.5 | 18 | 7 | 5 | 5 |
运行结果
所以在购买汽车时,据所提供信息,利用熵值法计算得出的权重为油耗占9.99%,功率占10.62%,费用占9.24%,安全性占9.42%,维护性占39.42%,操作性占21.31%。故我们在进行购买决策时,更多是考虑车型的维护性、操作性和安全性等重要因素。这是从权重角度考虑的。
就本例而言,每个车型每个指标的得分与其权重的乘积之和为其综合评价值,这样求得本田0.161分,奥迪0.232分,桑塔纳0.494分,别克0.114分。所以综合评价排序为桑塔纳、奥迪、本田、别克。
代码
第1步:关注微信公众号:ZX先生
第2步:输入关键词:熵值法
第3步:观看文章,代码下载链接在文章里