参数估计回顾

基本概念:总体,样本,统计量

总体:试验的全部可能值,使用 X X 表示
样本:通过一定规则(放回抽样,不放回抽样)抽取得到一个样本或者一组样本。
一个个抽取得到的每一个特体也成为一个样本;一次抽取n个得到一组样本,n称为样本容量。
样本也看做是一个 随机向量 表示(X1,X2,X3,...,Xn)

  1. 在抽样实施之前,把样本看做随机变量,便于研究;
  2. 在抽样实施之后,得到一组随机变量的观测值,这时样本是一组数 (x1,x2,...,xn) ( x 1 , x 2 , . . . , x n )

样本既是一个随机向量,又是一组数。

总体X是具有分布函数F的随机变量, (X1,X2,X3,...,Xn) ( X 1 , X 2 , X 3 , . . . , X n ) 是具有分布函数F的独立同分布的随机变量。
样本(随机向量) (X1,X2,X3,...,Xn) ( X 1 , X 2 , X 3 , . . . , X n ) 的分布函数 F(x1,x2,...,xn) F ( x 1 , x 2 , . . . , x n )

F(x1,x2,...,xn)=i=1nF(xi) F ( x 1 , x 2 , . . . , x n ) = ∏ i = 1 n F ( x i )

如果 X X 的概率密度函数为f,则样本(随机向量) (X1,X2,X3,...,Xn) ( X 1 , X 2 , X 3 , . . . , X n ) 的概率密度函数为
f(x1,x2,...,xn)=i=1nf(xi) f ( x 1 , x 2 , . . . , x n ) = ∏ i = 1 n f ( x i )

统计量
刻画总体某些参数,统计量是样本的函数。
比如知道总体是正态分布但是 μ μ , σ σ 未知,这时我们从总体中抽取一组样本,对样本分析,得到一个适当的统计量 μ^ μ ^ , σ^ σ ^ 估计总体的 μ μ , σ σ
为什么能够使用统计量近似真实的未知量?因为有大数定律。
通常情况,统计量使用 θ^(θ1,θ2,...,θn) θ ^ ( θ 1 , θ 2 , . . . , θ n ) 表示有n个未知参量。如上述 μ^ μ ^ , σ^ σ ^ ,令 θ1=μ^ θ 1 = μ ^ , θ2=σ^ θ 2 = σ ^ .
统计量是一个确定的数。
统计量是一个随机变量,因为样本具有随机性,所以统计量有概率分布。比如(随机向量) (X1,X2,X3,...,Xn) ( X 1 , X 2 , X 3 , . . . , X n ) 是总体 XN(μ,σ2) X ∼ N ( μ , σ 2 ) 的一个样本,则统计量 x¯N(μ,σ2) x ¯ ∼ N ( μ , σ 2 )

极大似然估计

参数估计包括了矩估计和极大似然估计,这里只介绍极大似然估计。
样本是总体的一个随机抽样,每个样本是独立的,与总体同分布的。
对于总体X,如果随机变量是连续的,概率密度函数为 f(x;θ) f ( x ; θ ) ,对于其样本( x1,x2,x3,...,xn x 1 , x 2 , x 3 , . . . , x n ),令L作为 θ θ 的函数就是似然函数,

L(X;θ)=inf(xi;θ) L ( X ; θ ) = ∏ i n f ( x i ; θ )

通常情况下,取对数
ln(L(X;θ))=ln(inf(xi;θ))=inlnf(xi;θ) l n ( L ( X ; θ ) ) = l n ( ∏ i n f ( x i ; θ ) ) = ∑ i n l n f ( x i ; θ )

要求上式的最值,也就是求多元函数极值的问题。
可以用泰勒展开再根据极值定理求解,或者将其转为矩阵形式,用正定二次型来判断。
步骤:


procedure

例子一

XN(μ,σ2) X ∼ N ( μ , σ 2 ) ,求 μ μ , σ2 σ 2 的极大似然估计。
分析:
总体服从 μ μ , σ2 σ 2 的连续分布,可以写出总体的概率密度函数

f(x)=12πσe(xμ)22σ2 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2

样本( x1,x2,x3,...,xn x 1 , x 2 , x 3 , . . . , x n )的概率密度函数为
f(xi)=12πσe(xiμ)22σ2 f ( x i ) = 1 2 π σ e − ( x i − μ ) 2 2 σ 2

θ1 θ 1 , θ2 θ 2 代替 μ μ , σ σ ,写出似然函数

L(X;θ1,θ2)=inf(xi)=(2πθ22)n2e12θ22ni(xiθ1)2 L ( X ; θ 1 , θ 2 ) = ∏ i n f ( x i ) = ( 2 π θ 2 2 ) − n 2 e − 1 2 θ 2 2 ∑ i n ( x i − θ 1 ) 2

取对数
ln(L(X;θ1,θ2))=n2ln((2πθ22))12θ22in(xiθ1)2 l n ( L ( X ; θ 1 , θ 2 ) ) = − n 2 l n ( ( 2 π θ 2 2 ) ) − 1 2 θ 2 2 ∑ i n ( x i − θ 1 ) 2

使用极值定理求参数值,求导并令其导数值为0.

ln(L(X;θ1,θ2))θ1=1θ22in(xiθ1)=0 ∂ l n ( L ( X ; θ 1 , θ 2 ) ) ∂ θ 1 = 1 θ 2 2 ∑ i n ( x i − θ 1 ) = 0
x1+x2+x3+...+xnnθ1=0 x 1 + x 2 + x 3 + . . . + x n − n θ 1 = 0
θ1=x¯ θ 1 = x ¯

ln(L(X;θ1,θ2))θ2=nθ2+1θ23in(xiθ1)2=0 ∂ l n ( L ( X ; θ 1 , θ 2 ) ) ∂ θ 2 = − n θ 2 + 1 θ 2 3 ∑ i n ( x i − θ 1 ) 2 = 0
θ22=1nin(xiθ1)2 θ 2 2 = 1 n ∑ i n ( x i − θ 1 ) 2

代入 θ1=x¯ θ 1 = x ¯
θ22=1nin(xix¯)2 θ 2 2 = 1 n ∑ i n ( x i − x ¯ ) 2

例子二


exponential_distribution
analysis
step1
step2
step3

例子三


Q3

先写出似然函数

step1

求极值点并验证是否为最值。

step2


参考:

概率论与数理统计 https://www.bilibili.com/video/av17582696/
最大概似法 https://www.youtube.com/watch?v=t_KUThpWWcY
StatQuest: Maximum Likelihood: https://www.youtube.com/watch?v=XepXtl9YKwc
StatQuest: Maximum Likelihood Example https://www.youtube.com/watch?v=cDlNsHUBmw4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值