面试算法题:柱状图中最大矩形

题目:
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

在这里插入图片描述

以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。

在这里插入图片描述

图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。

示例:

输入: [2,1,5,6,2,3]
输出: 10

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/largest-rectangle-in-histogram
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路:
使用单调增栈(不严格),注意我们每次弹出的是下标,并且我们每次是根据弹出的下标计算的该下标对应高度的面积,
找到下图的部分进行求解
当前弹出元素的面积s=(当前访问元素下标i-栈顶元素(弹出元素后的下一个栈顶)下标加一)*heights[当前需要弹出的元素下标]

将每次弹出元素进行面积比较,求的最大即可

我们需要注意,最后由于是不严格的单调栈,最后栈中永远都有两个辅助 0 (保证原始的heights里面的元素都能弹出)
在这里插入图片描述

代码:

#include<iostream>
#include<vector>
#include<stack>
#include<algorithm>
using  namespace std;



class Solution {
public:
	int largestRectangleArea(vector<int>& heights)
	{
		//单调栈(不严格单调)
		stack<int> s;
		//经过处理一和处理二后保证了原始的heighs能够在栈中全部弹出,当然,最后栈中还留有我们加的两个辅助数0
		heights.insert(heights.begin(), 0);//这个是保持所有元素都能弹出处理一
		heights.push_back(0);//这个是保持所有元素都能弹出处理一
		int maxS = 0;

		for (int i = 0;i < heights.size();i++)
		{
			while (!s.empty() && heights[s.top()] > heights[i])
			{
				int current_h = heights[s.top()];
				s.pop();
				
				int left = s.top() + 1;
				int right = i - 1;
				cout<<"left="<<left<<"  "<<"right="<<right<<"  "<<"left*right="<<left*right<<endl;
				maxS = max(maxS, (right - left + 1)*current_h);
			}

			s.push(i);

		}
		cout << s.size();

		return maxS;

	}
};

int  main()
{
	Solution s;
	vector <int> heights{ 2,1,5,6,2,3 };
	s.largestRectangleArea(heights);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值