题目:
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。
图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。
示例:
输入: [2,1,5,6,2,3]
输出: 10
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/largest-rectangle-in-histogram
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
使用单调增栈(不严格),注意我们每次弹出的是下标,并且我们每次是根据弹出的下标计算的该下标对应高度的面积,
找到下图的部分进行求解
当前弹出元素的面积s=(当前访问元素下标i-栈顶元素(弹出元素后的下一个栈顶)下标加一)*heights[当前需要弹出的元素下标]
将每次弹出元素进行面积比较,求的最大即可
我们需要注意,最后由于是不严格的单调栈,最后栈中永远都有两个辅助 0 (保证原始的heights里面的元素都能弹出)
代码:
#include<iostream>
#include<vector>
#include<stack>
#include<algorithm>
using namespace std;
class Solution {
public:
int largestRectangleArea(vector<int>& heights)
{
//单调栈(不严格单调)
stack<int> s;
//经过处理一和处理二后保证了原始的heighs能够在栈中全部弹出,当然,最后栈中还留有我们加的两个辅助数0
heights.insert(heights.begin(), 0);//这个是保持所有元素都能弹出处理一
heights.push_back(0);//这个是保持所有元素都能弹出处理一
int maxS = 0;
for (int i = 0;i < heights.size();i++)
{
while (!s.empty() && heights[s.top()] > heights[i])
{
int current_h = heights[s.top()];
s.pop();
int left = s.top() + 1;
int right = i - 1;
cout<<"left="<<left<<" "<<"right="<<right<<" "<<"left*right="<<left*right<<endl;
maxS = max(maxS, (right - left + 1)*current_h);
}
s.push(i);
}
cout << s.size();
return maxS;
}
};
int main()
{
Solution s;
vector <int> heights{ 2,1,5,6,2,3 };
s.largestRectangleArea(heights);
}