斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)特别指出:第0项是0,第1项是第一个1。
1.递归: 坏处是n很大时,发生溢出
int
Fibonacci(
int
n) {
if
(n<=
1
)
return
n;
else
return
Fibonacci(n-
1
)+Fibonacci(n-
2
);
}
2.
int
Fibonacci(
int
n) {
int
preNum=
1
;
int
prePreNum=
0
;
int
result=
0
;
if
(n==
0
)
return
0
;
if
(n==
1
)
return
1
;
for
(
int
i=
2
;i<=n;i++){
result=preNum+prePreNum;
prePreNum=preNum;
preNum=result;
}
return
result;
}
int
Fibonacci(
int
n) {
int
f =
0
, g =
1
;
while
(n--) {
g += f;
f = g - f;
}
return
f;
}
效率分析:
1中递归算法:基本操作为
Fibonacci(n-
1
)+Fibonacci(n-
2
);
所以当n>1时,A(n)=A(n-1)+A(n-2)+1 (加一因为多了一次加法运算)
A(0)=0 , A(1)=0
例子,斐波那契数算法1时间效率递归式的计算
当n>1时,A(n)=A(n-1)+A(n-2)+1
A(0)=0 , A(1)=0
改写[A(n)+1]-[A(n-1)+1]-[A(n-2)+1]=0
替换B(n)=A(n)+1
B(n)-B(n-1)-B(n-2)=0 B(0)=1 , B(1)=1
则 特征方程是
r2-r-1=0 根为:
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);
b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)
c.由a\b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)
d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2
e.可以发现最终得出的是一个斐波那契数列: