兔子繁殖问题(斐波那契数)

兔子繁殖问题

斐波那契数列又因数学家 列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“ 兔子数列”。
一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对
两个月后,生下一对小兔对数共有两对
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对
------
依次类推可以列出下表:
经过月数
0
1
2
3
4
5
6
7
8
9
10
11
12
幼仔对数
1
0
1
1
2
3
5
8
13
21
34
55
89
成兔对数
0
1
1
2
3
5
8
13
21
34
55
89
144
总体对数
1
1
2
3
5
8
13
21
34
55
89
144
233
幼仔对数=前月成兔对数
成兔对数=前月成兔对数+前月幼仔对数
总体对数=本月成兔对数+本月幼仔对数
可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个 级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)

斐波那契数的Java算法代码

/**
 * 
 *斐波那契数即 1,2,3,5,8,13,21,34,55。。。。。
 *前两位数之和为下一位数
 * @author lcx
 *
 */
public class Test {
	public static void main(String[] args) {
//		System.out.println(fib(42));
		System.out.println(fbncs(42));
	}
	/**
	 * 累加法打印指定数以内的斐波那契数
	 * @param max 指定数
	 */
	public static void fbnc(int max) {
		int i=0,j=1,k=0;   //  1 1 2 3 5 8 ...
		while(true){
			k=i+j;  
			if(k>max) break;  //如果超过最大数则跳出
			System.out.print(k+",");
			i=j; 
			j=k;
		}
	}
	/**
	 * 累加法返回指定位数的斐波那契数
	 * @param max 指定数
	 */
	public static int fbncs(int n) {
		int i=0,j=1,k=0;
		for(int x=0; x<n; x++){
			k=i+j;
			i=j; 
			j=k;
		}
		return k;
	}
	/**
	 * 递归法打印指定位置斐波那契数
	 * @param n 打印数量
	 * @return 对应斐波那契数
	 */
	public static int fib(int n){
		if(n<2)
			return 1;
	    else 
	    	return fib(n-1)+fib(n-2);
	}
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心歌技术

打赏不能超过你的早餐钱!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值