兔子繁殖问题
一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对
两个月后,生下一对小兔对数共有两对
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对
------
依次类推可以列出下表:
经过月数
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
幼仔对数
|
1
|
0
|
1
|
1
|
2
|
3
|
5
|
8
|
13
|
21
|
34
|
55
|
89
|
成兔对数
|
0
|
1
|
1
|
2
|
3
|
5
|
8
|
13
|
21
|
34
|
55
|
89
|
144
|
总体对数
|
1
|
1
|
2
|
3
|
5
|
8
|
13
|
21
|
34
|
55
|
89
|
144
|
233
|
幼仔对数=前月成兔对数
成兔对数=前月成兔对数+前月幼仔对数
总体对数=本月成兔对数+本月幼仔对数
可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个
级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)
斐波那契数的Java算法代码
/**
*
*斐波那契数即 1,2,3,5,8,13,21,34,55。。。。。
*前两位数之和为下一位数
* @author lcx
*
*/
public class Test {
public static void main(String[] args) {
// System.out.println(fib(42));
System.out.println(fbncs(42));
}
/**
* 累加法打印指定数以内的斐波那契数
* @param max 指定数
*/
public static void fbnc(int max) {
int i=0,j=1,k=0; // 1 1 2 3 5 8 ...
while(true){
k=i+j;
if(k>max) break; //如果超过最大数则跳出
System.out.print(k+",");
i=j;
j=k;
}
}
/**
* 累加法返回指定位数的斐波那契数
* @param max 指定数
*/
public static int fbncs(int n) {
int i=0,j=1,k=0;
for(int x=0; x<n; x++){
k=i+j;
i=j;
j=k;
}
return k;
}
/**
* 递归法打印指定位置斐波那契数
* @param n 打印数量
* @return 对应斐波那契数
*/
public static int fib(int n){
if(n<2)
return 1;
else
return fib(n-1)+fib(n-2);
}
}