Description:
You are given a list of non-negative integers, a1, a2, …, an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
There are 5 ways to assign symbols to make the sum of nums be target 3
.
Note:
- The length of the given array is positive and will not exceed 20.
- The sum of elements in the given array will not exceed 1000.
- Your output answer is guaranteed to be fitted in a 32-bit integer.
题意:给定一个一维整数数组num和一个目标和target,其中一维整数中的每个元素可为正或者负,计算有多少种可能的情况令数组所有元素和为target;
解法:我们需要考虑每一个元素可能的两种情况:正数或者负数;因此,可以利用回溯算法来实现,递归的终止条件是遍历完数组的所有元素,之后,我们需要判断最后的和是否为给定的目标元素;
Java
class Solution {
public int findTargetSumWays(int[] nums, int S) {
return countTargetSum(nums, S, 0);
}
private int countTargetSum(int[] nums, int S, int pos) {
if (pos == nums.length) {
if (S == 0) return 1;
return 0;
}
int res = 0;
res += countTargetSum(nums, S - nums[pos], pos + 1);
res += countTargetSum(nums, S + nums[pos], pos + 1);
return res;
}
}