剑指offer-47:不用加减乘除做加法

参考:《原码,反码,补码 详解》

题目描述

写一个函数,求两个整数之和,要求在函数体内不得使用+、-、*、/四则运算符号。

解题思路

不能使用加减乘除,我的第一反应就是使用 位运算二进制字符串判断 。二进制字符串从末尾到首位一位位判断,也是能得出结果的,但是代码太长,判断多种情况,太麻烦了。这并不是一个聪明的方法,舍弃了。

另一种方法是位运算。一个数在计算机中会先转成二进制,正数使用原码,负数使用补码,然后进行加减操作。例如计算机中有两个正整数 a 和 b,a + b 则是 a 的原码加上 b 的原码;a - b = a + (-b),即 a 的原码加上 (-b) 的补码。具体的计算过程,请看第一行的参考链接,讲的很详细。在Java中,负数的二进制也是使用补码表示的,所以,只需要考虑如何完成加法便能解决问题。

首先看两个例子,二进制是如何进行加法的。从两个例子中可以发现,在没有进位的情况下,两个二进制相加,实际上进行了异或操作。在有进位的情况下,先进行异或,得到的是不包含进位的结果 (A)。然后两个二进制再进行位与,得到只带进位的结果 (B)。然后重复以上两个操作,将 (A) 与左移一位的进位 (B) 异或,得到结果 ©;将 (A) 与左移一位的进位 (B) 位与,得到结果 (D);一直到最后位与的结果为0,即没有进位,终止循环。那么在最后 位与 之前的一步 异或 就是最终的结果。

例子1: 10 + 5 = 15

    1 0 1 0
+   0 1 0 1
--------------
    1 1 1 1
例子2: 9 + 5 = 14

   1 0 0 1              1 0 0 1            1 0 0 1               1 1 0 0                       1 1 0 0
+  0 1 0 1        异或	  0 1 0 1    位与 0 1 0 1      异或   0 0 0 1 0 (左移一位)    位与   0 0 0 1 0
--------------     ---------------     --------------     -----------------            -------------------
   1 1 1 0        (A)   1 1 0 0       (B)  0 0 0 1       (C)     1 1 1 0               (D)     0 0 0 0

代码如下:

public int Add(int num1,int num2) {
   while (num2 != 0) {
       int tmp = num1 ^ num2;
       int carry = (num1 & num2) << 1;
       num1 = tmp;
       num2 = carry;
   }
   return num1;
}
【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值