提到树首先肯定是树的三个遍历即前中后 序遍历。树的遍历可以通过两种方式实现,一种是最常见的最简单递归,一种是借用栈来进行迭代。虽然两者实现的形式不一样,但是两者的思想是一样的。都是有点类似于回溯算法的思想,拿中序遍历来说,中序遍历的顺序是左根右,无论是栈还是递归我们都先遍历到左子树,当遍历完最深层的左子树之后,开始返回最近的父节点遍历右子树,只不过迭代利用了栈的后进先出的特性,对右子树进行了保存。贴代码
递归实现中序遍历
class Solution {
public:
vector<int>res;
vector<int> inorderTraversal(TreeNode* root) {
if(root) {
inorderTraversal(root->left);
res.push_back(root->val);
inorderTraversal(root->right);
}
return res;
}
};
迭代实现中序遍历
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
stack<TreeNode*>s;
vector<int>res;
while(root ||s.size())
{
while(root)
{
s.push(root);
root=root->left;
}
root=s.top();
s.pop();
res.push_back(root->val);
root=root->right;
}
return res;
}
};
在刷二叉搜索树的时候遇到求不同的二叉搜索树的问题,此问题可以用动态规划解决,也可以利用卡塔兰树解决。
其实我们应该叫明安图数。更便于计算的公式定义如下:
递推公式如下:
1.括号化问题。2.出栈次序问题。3.将多边行划分为三角形问题。
2012腾讯实习招聘笔试题
在图书馆一共6个人在排队,3个还《面试宝典》一书,3个在借《面试宝典》一书,图书馆此时没有了面试宝典了,确保三个人都能借到书,求他们排队的总数?
阿里巴巴的笔试题目:说16个人按顺序去买烧饼,其中8个人每人身上只有一张5块钱,另外8个人每人身上只有一张10块钱。烧饼5块一个,开始时烧饼店老板身上没有钱。16个顾客互相不通气,每人只买一个。问这16个人共有多少种排列方法能避免找不开钱的情况出现。
动态规划题解方法根据上边介绍的递推公式写出。
class Solution {
public:
int numTrees(int n) {
vector<int> g(n+1);
g[1]=1;
g[0]=1;
for(int i=2;i<=n;i++)
{
for(int j=1;j<=i;j++)
g[i]+=g[j-1]*g[i-j];
}
return g[n];
}
};
明安图解决
class Solution {
public:
int numTrees(int n) {
long c = 1;
for(int i = 0; i < n; i++)
c = c * 2 * (2 * i + 1) /(i + 2);
return c;
}
};
知道了中序遍历这道题就可以直接利用迭代的方法秒杀。
这道题是让我们去验证父节点是否大于左子结点(a),且小于右子结点(b)。我们肯定是需要遍历这棵树的,中序遍历是先遍历到最深层的左叶子结点,然后就去遍历父节点,这个时候我们要 判断a只需将正在遍历的叶子结点用tmp保存,然后看是否大于等于父节点即可,大于就是返回错误,然后再返回去遍历最近的右子结点,注意这个时候tmp保存的是父节点,所以还是判断tmp是否大于等于右子节点(root->val)。就是tmp始终保存的是上一轮的值,然后拿着tmp和当前的root去比较。代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
long tmp=LONG_MIN;
stack<TreeNode*>s;
while(root ||s.size()!=0 )
{
while(root)
{
s.push(root);
root=root->left;
}
root=s.top();
s.pop();
if(tmp>=root->val)
return false;
tmp=root->val;
root=root->right;
}
return true;
}
};
虽然标记的 这是一道简单的题目,但是我一开始也没有想出来,看是否对称只需要看左子树的左结点和右子树的右结点是否相等,左子树的右结点和右子树的左结点是否相等。
递归代码如下
class Solution {
public:
bool isSymmetric(TreeNode* root) {
return helper(root,root);
}
bool helper(TreeNode* t1,TreeNode* t2)
{
if(!t1 && !t2) return true;
if(!t1 || !t2) return false;
return (t1->val==t2->val)&& helper(t1->left,t2->right) && helper(t1->right,t2->left);
}
};
其实通过队列或者栈去迭代思想是一样的
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if(root==NULL) return true;
stack<TreeNode*> s;
s.push(root->left);
s.push(root->right);
while(s.size())
{
TreeNode* t1=s.top();s.pop();
TreeNode* t2=s.top();s.pop();
if(!t1 && !t2) continue;
if(!t1 || !t2) return false;
if(t1->val!=t2->val) return false;
s.push(t1->left);
s.push(t2->right);
s.push(t1->right);
s.push(t2->left);
}
return true;
}
};