Adobee Chen
这个作者很懒,什么都没留下…
展开
-
数据治理之智能指标管理平台产品设计
产品概述:DataEasyIndex核心功能为指标设计即开发、指标模型创建后自动创建数仓表。是集指标设计、开发、应用、管理、监控于一体的一站式指标管理平台【原创 2024-05-17 15:07:27 · 140 阅读 · 0 评论 -
智能BI产品设计
以共享单车电子围栏监控系统为例,这里的关键指标有:企业停车时长、企业违停量、热点违停量、热点违停区域、车辆入栏率等。业务理解->构建指标体系->寻找规律(BI分析,发现问题)->提供改进(改进产品、活动运营、改善指标)->数据验证。数据采集------------>数仓建模----------->指标加工---------->数字大屏。数据库系统(生产系统):存储、对公、小微、信用库、其他。数据仓库系统(决策系统):客户、产品、渠道、交易、机构。柱状图、条图、面积图、气泡图、雷达图、词云图。原创 2024-05-06 21:14:06 · 1173 阅读 · 0 评论 -
数据质量问题根源剖析
数据质量问题根源剖析原创 2022-10-30 21:02:41 · 505 阅读 · 0 评论 -
从“数字化“到“数智融合“发展洞察
数智融合时代,如何做好"元数据管理?原创 2022-10-03 15:52:38 · 908 阅读 · 0 评论 -
如何构建企业级数据治理体系
数据治理的核心工作:在企业的数据建设进程中,保障企业的数据资产得到正确有效管理。原创 2022-07-12 15:15:40 · 612 阅读 · 0 评论 -
六大行数据治理现状盘点:治理架构、数据标准与数据中台(2022.04)
银行业是数据驱动型行业,在提供金融服务的过程中,积累了海量的用户数据、交易数据以及外部数据。数据已经成为银行业的重要资产。银行业通过数据挖掘、分析和应用,使静态数据流动起来,一方面,可以赋能现有业务的发展,更好地实现数字化转型;另一方面,能够对客户群体进行精准画像,充分了解客户需求,构建真正“以客户为中心”的金融产品与服务。...原创 2022-06-23 10:28:17 · 218 阅读 · 0 评论 -
数据治理概述(一)
前言“数字转型。治理先行”。“数据治理”的重点在于"治理",它是一个涉及企业战略、组织架构、数据标准、管理规范、数据文化、技术工具的综合体。“数据治理不仅仅是苦活、累活,还是一个受累不讨好、经常背锅、不容易让领导看见价值的活””数据治理“,说起来容易,做起来难。这是业界共识,再数据化转型过程中,数据治理不得不做,但又难以做好,这成了企业的一个“魔咒”通过这一系列文章,可以理解以下问题什么是数据治理? 数据治理治理的是数据吗? 为什么要实施数据治理? 数据治理会遇到哪些挑战? 数据原创 2022-01-12 11:26:04 · 2958 阅读 · 0 评论 -
2021-2022中国金融数字化“新”洞察行业研究报告
2021-2022中国金融数字化“新”洞察行业研究报告原创 2022-06-20 16:04:57 · 108 阅读 · 0 评论 -
[元数据]LinkedIn-DataHub
datahub 概要原创 2022-06-02 22:43:37 · 690 阅读 · 0 评论 -
[元数据]B站大数据平台元数据业务学习
前言元数据是数据平台的衍生数据,比如调度任务信息,离线hive表,实时topic,字段信息,存储信息,质量信息,热度信息等。在数据平台建设初期,这类数据主要散落于各种平台子系统的数据库中,例如HiveMetaStore,调度系统db等,在这个时期数据平台主要以服务业务数据需求为主,平台也以管理表,写ETL,配置调度这类功能性需求作为重点,对于这些散落元数据的收集与统一管理并没有太过强烈的诉求。 随着数据平台业务规模的增长,平台会沉淀大量的数据表,调度任务等元数据。由于前期快速的业务发展产生大量数据.转载 2022-05-24 23:07:14 · 294 阅读 · 0 评论 -
Informatica:数据质量管理六步法
关于企业数据质量管理和控制,Informatica公司早在10年前提出了一个数据质量管控的六步法,从初始的数据探查到持续监测以及持续进行的数据优化,提供企业所需要的各种数据质量管理能力,并确保其所有数据均是完整的、一致的、准确的、通用的。虽然该方法本质目的是在兜售Informatic公司的数据质量管理的相关产品和解决方案文章参考:Informatica:数据质量管理六步法...原创 2022-05-24 00:04:09 · 315 阅读 · 0 评论 -
superset、metabase、redash、dataease开源BI对比
superset metabase redash dataease 活跃度 github star 41k , 1个月一更新版本 github star 28.3k,一个月一更新版本 github star 21k,最新版本是去年11月份更新,更新频率比较慢 github star 5.7k,每半个月一更新版本 侧重人群 技术人员、分析人员 侧重非技术人员如产品经理、市场运营人员 技术人员,业务人员(只支持sql方式) 宣称人...原创 2022-05-12 14:59:57 · 2420 阅读 · 0 评论 -
开源BI工具对比(一):BI介绍
前言:本专栏以 安装、二次开发难度、支持数据源、界面交互设计、在开源BI中选出最适合的与商业BI进行对比。BI是给谁用的?BI工具定位由数据分析师使用,通过灵活配置各种多维分析、深度钻取,生成各种报表和可交互的图形化展示什么时候用在大数据领域,一般在数仓建模之后,发布数据服务,用BI工具进行数据可视化下面是开源/商业BI工具汇总...原创 2021-02-05 11:16:09 · 2978 阅读 · 0 评论 -
开源BI工具对比(二):宜信 davinci
一:概述Davinci 是一个 DVaaS(Data Visualization as a Service)平台解决方案,面向业务人员/数据工程师/数据分析师/数据科学家,致力于提供一站式数据可视化解决方案。既可作为公有云/私有云独立部署使用,也可作为可视化插件集成到三方系统。用户只需在可视化 UI 上简单配置即可服务多种数据可视化应用,并支持高级交互/行业分析/模式探索/社交智能等可视化功能。-----来自davinci官方介绍github地址:https://github.com/edp963原创 2021-02-18 14:31:32 · 2463 阅读 · 3 评论 -
永洪BI产品体验(一)数据源模块
前言永洪BI有三个产品Yonghong Z-Suite: 永洪旗舰产品,面向大型企业的一站式大数据分析平台,服务于大数据量、高性能及高可靠性的自助式智能分析全场景。企业可以在一个统一的平台上完成全流程数据分析任务,极大降低了实施、集成、培训的成本。Yonghon X-Suite:面向部门级或中小企业的一站式大数据分析平台,快速整合海量数据,提供易用、高效的数据可视化分析Yonghong Desktop:面向个人用户的敏捷型一站式桌面大数据分析工具,省去繁琐的部署环节,即装即用,帮助原创 2022-02-21 15:51:52 · 2210 阅读 · 0 评论 -
开源BI工具对比(二):Superset
第一章:Superset入门1.1superset概述官网地址:http://superset.apache.org/官网介绍:ApacheSuperset是一个开源的、现代的、轻量级BI分析工具,能够对接多种数据源、拥有丰富的图标展示形式、支持自定义仪表盘,且拥有友好的用户界面,十分易用。1.2应用场景由于Superset能够对接常用的大数据分析工具,如Hive、Kylin、Druid等,且支持自定义仪表盘,故可作为数仓的可视化工具。下面列出了superset支持的数据源(.原创 2021-02-07 15:27:23 · 1659 阅读 · 0 评论 -
StartRocks介绍
介绍1、StartRocks是MPP数据库、StartRocks致力构建极速统一分析体验,满足企业用户的多种数据分析场景,支持多种数据模型(明细模型、聚合模型、更新模型),多种导入方式(批量和实时),可整合和接入多种现有系统(spark、flink、hive、elasticsearch)2、StarRocks兼容Mysql协议,可使用Mysql客户端和常用BI工具对接StarRocks来进行数据分析。3、StarRocks采用分布式架构,对数据表进行水平划分并多副本存储。集群规模可以灵活伸缩,能原创 2022-03-11 18:08:12 · 6249 阅读 · 0 评论 -
开源BI工具对比(三) DataEase
介绍DataEase 是开源的数据可视化分析工具,帮助用户快速分析数据并洞察业务趋势,从而实现业务的改进与优化。DataEase支持丰富的数据源连接,能够通过拖拉拽方式快速制作图表,并可以方便的与他人分享 ---官方介绍架构DataEase的功能:图表展示: 支持PC端、移动端及大屏 图表制作:使用Echart/Antv,支持拖拉拽方式快速制作仪表盘 数据引擎: 支持直连模式、本地模式(基于 Apache Doris/kettle实现) 数据连接:支持关系型数据库、Excel等原创 2021-12-08 19:07:37 · 2833 阅读 · 0 评论 -
数字化转型之 BI建设的阶段
文章参考:搞数据的你,可以弄清系统报表模块和专业BI的区别吗信息化阶段 数据状态 主要矛盾 数据团队的举措和发力点 信息化启动期 数据资产进行原始积累 数据少,数据质量不高 业务对数据分析认知度不高 “” 信息化整合期 大量系统上线,各业务领域数据资产日渐丰富 数据孤岛 业务对数据形成刚需 信息化升级期 业务系统稳定,海量多维数据被采集并沉淀到数据平台原创 2022-04-17 00:02:38 · 2236 阅读 · 0 评论 -
主数据识别方法
文章来自:主数据识别方法当今企业,尤其是大型集团企业,往往拥有数百个独立的应用程序和系统(如ERP、PDM、CRM、MES系统等)。跨组织、跨部门的数据很容易变得支离破碎、重复、以及不能及时更新。发生这种情况时,如果要回答一些企业关心的基本问题都会变得很痛苦:例如“谁是我们最赚钱的客户?” “什么产品的利润率最高?”待续。。。...原创 2022-03-21 10:13:13 · 628 阅读 · 0 评论 -
数据质量:数据治理的核心
以下文章总结于BigDataplus,作者后羿BigDataplus网站:数据质量:数据治理的核心前提要了解数据治理及数据质量,还得从数据、数据治理、数据质量这些基本概念说起。何为数据?维基百科对数据的定义:数据(data)是指未经过处理的原始记录。数据是通过工具或机器搜集的原始资料。确切的说,数据是原始、未经处理的资料,甚至从未有人接触过、看过或者思考它。如”嫦娥四号“探测器从月球返回地球的信息流就是数据。信息就是经过某种处理并工人使用的数据。比如比特流转换为图像等。知识指的原创 2022-02-28 18:00:10 · 1329 阅读 · 0 评论