文章目录
从香农公式联想到无线网络关键技术
1 【理论依据】香农定理
美国数学家克劳德.香农在<通信的数学理论>论文中,提出了如何度量一个信道的信息传输能力,即信道容量C。在论文中,通过严格的推导,得出了信道的最大传输速率C的公式(即著名的香农公式):
C = W log 2 ( 1 + S N ) C=W\log_2(1+\frac{S}{N}) C=Wlog2(1+NS)
[!NOTE]
C:信道容量,单位是bit/s;
W:信道带宽,单位是Hz;
S:信道内所传信号的平均功率,单位瓦特;
N:信道内部的高斯噪声功率,单位是瓦特。
从公式可以看出来,信道容量©与信道带宽(W)成正比,与通信系统的信噪比(S/N)成正比。如果想提高信道的最大传输速率,则可以从增加带宽(W)或提高信噪比(S/N)下手。
[!CAUTION]
对于公式(1),大家可能会有疑问(包括我):信噪比(S/N)是无量纲的,信道带宽(W)的单位是Hz,得到的信道容量C的单位却为bit/s?
这个疑问大家可以翻一下奈奎斯特抽样定理:对于一个带宽为W赫兹的理想信道,其最大码元速率为2W波特。
可能大家对这个码元速率有点不好理解,简化一下,直接以传输二进制数据信号为例,那奈奎斯特抽样定理可以这样表述:对于一个带宽为W(Hz)的理想信道,其最大二进制数据信号传输速率为2W(bit/s)。
可以说“带宽”与“速率”几乎是等价的。所以不用纠结带宽和速率的关系了。
2 【仿真验证】香农定理的MATLAB仿真
从香农公式可以看出信道容量与信道带宽和看出信噪比的关系,下面我们用MATLAB仿真,更加直观地看看这些关系:
2.1 MATLAB仿真代码
%% 信道容量与信噪比之间的关系
%信噪比从-30dB~30dB,间隔0.1dB
pn0_db=[-30:0.1:30];
pn0=10.^(pn0_db./10);
%固定信道带宽为10kHz,
capacity=10000.*log2(1+pn0/10000);
pause;
clf;
semilogx(pn0,capacity)
title('信道容量与信噪比之间的关系');
xlabel('信噪比')
ylabel('信道容量(bps)');
clear
%% 信道容量与信道带宽之间的关系
%信道带宽从1Hz~100000Hz,间隔不一样
w=[1:10,12:2:100,105:5:500,510:10:5000,5025:25:20000,20050:50:100000];
%固定信噪比
pn0db=25;
pn0=10^(pn0db/10);
capacity=w.*log2(1+pn0./w);
pause;
clf;
semilogx(w,capacity);
title('信道容量与信道带宽之间的关系');
xlabel('信道带宽(Hz)');
ylabel('信道容量(bps)');
clear
%% 信道容量与信道带宽和信噪比的关系
%信道带宽从1Hz~10000Hz,间隔不一样
w=[1:5:20,25:20:100,130:50:300,400:100:1000,1250:250:5000,5500:500:10000];
%信噪比从-30dB~30dB,间隔0.1dB
pn0_db=[-30:1:30];
pn0=10.^(pn0_db/10);
%按照间隔,分别轮询带宽和信噪比
for i=1:45
for j=1:61
c(i,j)=w(i)*log2(1+pn0(j));
end
end
pause;
clf;
[w,pn0_db]=meshgrid(w,pn0_db);
surf(w,pn0_db,c');
title('信道容量与信道带宽和信噪比的关系');
[!CAUTION]
运行MATLAB代码时,如果想输出下一幅图,则需在命令行窗口按照提示输入任意键,不然程序就一直暂停在那里。
2.2 信道容量与信噪比之间的关系
固定信道带宽之后,发现信道容量随着信噪比增大而急剧增加。
2.3 信道容量与信道带宽之间的关系
固定信噪比之后,发现信道容量随着带宽增大而增加,但是最后趋于一个固定值。
2.4 信道容量与信道带宽和信噪比的关系
信道容量随着信道带宽和信噪比的增加而增大,即:要提高信道容量,可以增加信道带宽或者提高信噪比。
[!NOTE]
如果信噪比和信道带宽确定了,那信道容量的上限就确定了,目前还没有其他方法可以提高这个上限。
3 【实践应用】香农定理应用到无线关键技术
从上面对香农公式的理论分析可以知道:数据传输速率永远受到接收信号信噪比和信道带宽的限制。具体来说,对于低带宽利用率的情况,因为可利用的带宽太有限了,增加传输速率主要通过增大接收信号功率(此时假设噪声一定);而对于高带宽利用率的情况,传输速率大于或者等于可用的信道带宽,此时如果增加接收信号功率效果会更明显。
现在我们来看看有哪些无线关键技术是为了提高信噪比或者增加信道带宽的。我们以以下几种关键技术为例:
3.1 MIMO技术(从提高信噪比着手)
根据香农公式可以看出,提高信噪比可以提高信道容量。这时MIMO技术可以很好的解决这个问题。
MIMO技术是指多进多出技术,即指在发射端和接收端分别使用多根发射天线和多根接收天线,使信号通过发射端与接收端的多根天线传送和接收,将信号分散到多个路径,从而增强信号的强度,降低干扰,以提高信噪比,从而改善通信质量。
一般来说,天线数量越多,信噪比越大。
3.2 OFDM技术(从传输带宽着手)
根据香农公式可以看出,增加传输带宽可以提高信道容量。
但是,单纯的增加传输带宽,面对多径衰落可能效果不一定好,这时OFDM技术就产生了。
OFDM技术是指正交频分复用技术,即将宽带信号可以处理成多路窄带正交信号的和,通过频分复用实现高速串行数据的并行传输,有很好的抗多径衰落的能力。
3.3 高阶调制技术(从提高带宽利用率着手)
对于给定传输带宽情况下,如果采用高阶调制,则可实现更高数据传输速率。
高阶调制技术的原理是在单个字符上搭载更多的信息比特,以提高带宽利用率。可以打个比方,时间固定的情况下啊,如果想在同一块地上让更多的车通过,可以建成重庆一样的5层“魔幻”立交桥,通行效率直接翻5倍。
[!NOTE]
香农定理确定了在传输带宽、信噪比不变的情况下,信息传输的极限速率。
而高阶调制技术其实就是在发送端从空间上将数据“压缩”传输,到接收端再“解压缩”数据,达到提升信息传输速率的目的。高阶调制技术并没有提升信道容量,而是在确定的信道容量基础上,将数据进行“压缩”传输。所以,这与香农定理是不冲突的。大家可以想一想是不是这么回事?
3.4 链路自适应技术(从信道质量着手)
在实际的通信系统中,尤其是无线通信系统,其通信信道质量不是固定的,如果采用固定的传输参数(包括调制、编码、MIMO及传输带宽等),则肯定会出问题的,这时链路自适应技术就出现了。
链路自适应技术是指可以根据通信信道的实时特性,动态调整通信系统传输参数,以更好地适应通信信道传输。
4 【总结】
香农定理的出现,为通信系统理论形成奠定了基础。从香农公式中可以看出,信道的传输速率到底与哪些参数有关,为通信系统的关键技术研究指明了方法。