【大模型技术面试】

最新大模型技术的深度面试题与详解,涵盖Transformer架构、语言模型演进、RLHF优化、对比学习及多模态模型等核心考点,并附代码实现。


一、Transformer 基础

1. 编码器 vs 解码器注意力机制区别
组件注意力类型掩码机制核心作用
编码器双向自注意力全序列上下文编码
解码器掩码自注意力 + 交叉注意力未来位置掩码自回归生成 + 融合编码器输出

关键区别

  • 掩码目的:解码器通过掩码确保当前位置仅依赖历史信息(防止信息泄露)。
  • 计算复杂度:解码器因掩码和交叉注意力,计算量更高。

√d_k 的作用
缩放点积结果,防止方差过大导致Softmax梯度消失。公式:

\text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V  

当 ( d_k ) 较大时,点积结果方差增大,Softmax梯度饱和,缩放保持梯度稳定。


二、语言模型演进与Qwen改进

1. 经典Transformer语言模型
类型代表模型核心特点
仅编码器BERT, RoBERTa掩码语言建模,擅长分类任务
仅解码器GPT系列, LLaMA自回归生成,支持零样本推理
编码器-解码器T5, BART适合翻译、摘要等序列生成任务
2. Qwen vs 原始Transformer的改进

结构改动

  • 位置编码:用RoPE(旋转位置编码)替代Sinusoidal,支持长度外推。
  • 激活函数:SwiGLU替代ReLU,增强非线性表达能力:
    def swiglu(x, W, V, W2):  
        return (torch.silu(x @ W) * (x @ V)) @ W2  # SiLU = Swish  
    
  • 注意力机制:引入分组查询注意力(GQA),平衡MQA效率与MHA质量。

Qwen2的升级

  • 上下文长度:预训练32K → 通过YARN外推至128K。
  • 训练优化:在线DPO对齐、拒绝采样提升数学/代码能力。
  • 量化支持:GGUF/AWQ/GPTQ量化,72B模型可部署在消费级显卡。

三、RLHF优化:PPO vs DPO

1. PPO流程与损失函数
SFT模型
生成响应
人工标注偏好
训练奖励模型RM
PPO优化策略模型

PPO损失函数

\mathcal{L}^{PPO} = \mathbb{E} \left[ \min\left( \frac{\pi_\theta}{\pi_{\text{old}}} A_t,  \text{clip}\left(\frac{\pi_\theta}{\pi_{\text{old}}}, 1-\epsilon, 1+\epsilon\right) A_t \right) \right]  

优点:稳定性高,适合环境奖励明确的任务(如游戏控制)。

2. DPO原理与损失函数

核心思想:直接优化偏好数据,跳过奖励建模:

\mathcal{L}^{DPO} = -\log \sigma\left( \beta \left( \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \right)  

优缺点

  • ✅ 数据需求少,训练快(无RM模型)
  • ❌ 对分布偏移敏感,易过拟合偏好数据。

适用场景

  • PPO:高精度奖励任务(自动驾驶)
  • DPO:对话生成、推荐系统(偏好数据易获取)。

四、对比学习与多模态模型

1. CLIP核心原理

双塔架构

  • 图像编码器:ViT/ResNet提取特征
  • 文本编码器:Transformer编码描述
    损失函数(对比损失):
\mathcal{L} = -\log \frac{\exp(\text{sim}(I,T)/\tau)}{\sum_{j=1}^N \exp(\text{sim}(I,T_j)/\tau}  

优势:零样本分类能力强,跨模态检索效果显著。

其他对比学习方法

  • MoCo:动量编码器构建动态字典
  • SimCLR:加大批尺寸+非线性投影头
  • OFF-CLIP:医疗领域改进,增强正常样本聚类。
2. 多模态模型示例
模型核心技术亮点
BLIP-2Q-Former桥接ViT与LLM轻量适配器,零样本VQA提升8.7%
Qwen-VL三阶段训练+位置感知适配器支持多图推理、文档解析
LLaVA简单MLP连接视觉与LLM训练高效,适合轻量化部署
3. 多模态模型的核心挑战
  • 模态对齐瓶颈:文本描述与视觉细粒度特征难以精确匹配(如医疗影像中的病灶定位)。
  • 推理效率:视频/3D数据处理计算成本高(Qwen-VL需动态帧率压缩)。
  • 幻觉问题:生成结果与视觉内容不一致(需RLHF强化约束)。

五、代码题:最长公共子序列(LCS)

题目:LeetCode 1143. 最长公共子序列
解法:动态规划(时间复杂度 (O(mn)))

def longestCommonSubsequence(text1: str, text2: str) -> int:  
    m, n = len(text1), len(text2)  
    dp = [[0] * (n+1) for _ in range(m+1)]  
    for i in range(1, m+1):  
        for j in range(1, n+1):  
            if text1[i-1] == text2[j-1]:  
                dp[i][j] = dp[i-1][j-1] + 1  # 字符匹配,长度+1  
            else:  
                dp[i][j] = max(dp[i-1][j], dp[i][j-1])  # 取左侧或上方最大值  
    return dp[m][n]  

关键点

  • dp[i][j] 表示 text1[0:i]text2[0:j] 的LCS长度。
  • 空间可优化至 (O(n))(滚动数组)。

本答案整合自大厂真题及技术文档,建议重点掌握:

  1. 结构对比(如Qwen的RoPE vs Transformer的Sinusoidal)
  2. 损失函数推导(PPO/DPO的数学本质)
  3. 多模态痛点(对齐效率与幻觉问题)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值