Adaboost算法实例讲解,通俗易懂

Adaboost算法思想:

  1. 提高那些被前一轮弱分类器错误分类的样本的权值,降低那些被正确分类的样本的权值;

  2. 采用加权多数表决的方法。具体的,加大分类误差率小的弱分类器的权值,使其在表决中起较大的作用;减小分类误差率大的弱分类器的权值,使其在表决中起较小的作用。

Adaboost算法流程
在这里插入图片描述以简单二分类为例:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值