Adaboost算法思想:
-
提高那些被前一轮弱分类器错误分类的样本的权值,降低那些被正确分类的样本的权值;
-
采用加权多数表决的方法。具体的,加大分类误差率小的弱分类器的权值,使其在表决中起较大的作用;减小分类误差率大的弱分类器的权值,使其在表决中起较小的作用。
Adaboost算法流程
以简单二分类为例:
Adaboost算法思想:
提高那些被前一轮弱分类器错误分类的样本的权值,降低那些被正确分类的样本的权值;
采用加权多数表决的方法。具体的,加大分类误差率小的弱分类器的权值,使其在表决中起较大的作用;减小分类误差率大的弱分类器的权值,使其在表决中起较小的作用。
Adaboost算法流程
以简单二分类为例: