机器学习
Xayahion
这个作者很懒,什么都没留下…
展开
-
DataWhale基础算法梳理-3.决策树
【学习任务】 1. 信息论基础(熵 联合熵 条件熵 信息增益 信息增益比 基尼不纯度)? 2.决策树的不同分类算法(ID3算法、C4.5、CART分类树)的原理及应用场景? 3. 回归树原理? 4. 决策树防止过拟合手段? 问题答案: 1.信息论基础 熵:信息是很抽象的概念,一直都无法估计信息量,直到1948年,香农提出了“信息熵”的概念,指出了“信息是用来消除随机不确定性的东西”,...原创 2019-01-31 23:05:59 · 182 阅读 · 0 评论 -
DataWhale基础算法梳理-1.线性回归,梯度下降
一。问题: 1.线性回归损失函数的极大似然推导:西瓜书公式3.4除了用最小二乘法以外,怎么用极大似然推得? 2.一元线性回归的参数求解公式推导:西瓜书公式3.7和3.8怎么推来的? 3.多元线性回归的参数求解公式推导:西瓜书公式3.10和3.11怎么推来的? 4.线性回归损失函数的最优化算法:什么是批量梯度下降、随机梯度下降、小批量梯度下降? 二。笔记 4. 批量梯度下降...原创 2019-01-27 16:11:44 · 210 阅读 · 0 评论 -
DataWhale基础算法梳理-2.逻辑回归
【学习任务】 Logistic回归损失函数的极大似然推导:西瓜书公式3.27怎么推来的? Logistic回归损失函数的最优化算法:什么是牛顿法、拟牛顿法? 为什么不用线性回归做分类? Logistic回归为什么不像线性回归那样用平方损失函数? Logistic回归的参数为什么不像线性回归那样直接公式求解? Logistic回归与线性回归有哪...原创 2019-01-29 21:57:19 · 182 阅读 · 0 评论