论文
天花板上飞着鱼
这个作者很懒,什么都没留下…
展开
-
论文阅读 Training Neural Machine Translation To Apply Terminology Constraints
一. 该方法是在模型训练层面解决术语注入的问题。 二. 训练阶段主要是改变数据的处理方式: 1. 原始数据层面(增加注释,0无关,1源语术语,2目标语言术语) 2.bpe层面 将原始数据的注释推广到bpe切分后的token上,eg:如果Stellvertreter_2切分成了a、b,则a_2,b_2。 3.embedding层面 将注释向量和词向量进行拼接。 4. 术语覆盖度问题 为了保证没有包含术语的句子也能正确翻译,限制包含术语的句子在训练语料10%。 5. 术语匹配问题.原创 2020-09-23 15:44:35 · 355 阅读 · 0 评论 -
论文阅读 Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search
一. 1. beam search 每个方框代表一个beam,每个beam内包含beam_size个hypothesis。 2. grid beam search beam的传播空间变成二维:横向表示generate(模型生成hypothesis)或continue(继续增加约束词),斜向表示start(开始增加约束词)。 二. 算法包含三层循环:1.时间步t. 2.约束词数c. 3.当前beam内的hypothesis. 三. hypothesis评分 不同约束数目的beam之原创 2020-09-22 16:37:46 · 749 阅读 · 0 评论