作为算法专家,我深知启发式算法在解决复杂问题时的重要性。启发式算法通常用于在合理时间内找到问题的近似最优解,特别是在面对NP-hard问题或大规模优化问题时。下面,我将详细描述几种常用的启发式算法,并提供相应的代码实例。
1. 模拟退火算法(Simulated Annealing)
模拟退火算法是一种概率型算法,它借鉴了物理退火过程的思想,通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而有效避免陷入局部最优并最终趋于全局最优。
代码实例(Python):
python复制代码
import math |
|
import random |
|
def simulated_annealing(cost_func, init_state, alpha, T_max, T_min, iterations): |
|
current_state = init_state |
|
current_cost = cost_func(current_state) |
|
best_state = current_state |
|
best_cost = current_cost |
|
T |