常用启发式算法的概念以及代码实例

作为算法专家,我深知启发式算法在解决复杂问题时的重要性。启发式算法通常用于在合理时间内找到问题的近似最优解,特别是在面对NP-hard问题或大规模优化问题时。下面,我将详细描述几种常用的启发式算法,并提供相应的代码实例。

1. 模拟退火算法(Simulated Annealing)

模拟退火算法是一种概率型算法,它借鉴了物理退火过程的思想,通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而有效避免陷入局部最优并最终趋于全局最优。

代码实例(Python)

 

python复制代码

import math
import random
def simulated_annealing(cost_func, init_state, alpha, T_max, T_min, iterations):
current_state = init_state
current_cost = cost_func(current_state)
best_state = current_state
best_cost = current_cost
T
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑夜照亮前行的路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值