Given an integer n, generate all structurally unique BST’s (binary search trees) that store values 1 … n.
Example:
Input: 3
Output:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST’s shown below:
和UBS1很像,思路整体也是类似的,不过因为这里要产生实质的结果,所以我们的参数不能仅仅是能用的数字个数,而是应该给数字的范围;
注意在用递归的时候,思路是从顶向下,会涉及很多重复的子问题,所以我们需要用memo来存储每一次的结果,调用的时候先检查memo是否已经解决了当前的问题。
核心思路就是在范围内扫描,以当前点为root,产生左右两边的集合,做笛卡尔积;
Error:注意root的生成位置,对于每个left和right的积我们都要产生一个root;
class Solution {
Map<String,List<TreeNode>> m = new HashMap<>();
public List<TreeNode> generateTrees(int n) {
if(n==0) return new ArrayList<>();
return generate(1,n);
}
public List<TreeNode> generate(int s,int e){
String key = s +" " + e;
if(m.containsKey(key)) return m.get(key);
List<TreeNode> res = new ArrayList<>();
if(s>e){
res.add(null);
return res;
}
if(s==e){
res.add(new TreeNode(s));
return res;
}
for(int i = s;i<=e;i++){
List<TreeNode> left = generate(s,i-1);
List<TreeNode> right = generate(i+1,e);
for(TreeNode l:left){
for(TreeNode r:right){
TreeNode root = new TreeNode(i);
root.left = l;
root.right = r;
res.add(root);
}
}
}
m.put(key,res);
return res;
}
}
总结:注意对于两个数字生成key的时候,不能采用数组,因为不是常量,可以采用字符串拼接的形式。