题目:
题目分析:
设区间的左右边界,左右边界只要有一个边界不同,那么他们定义为不同区间
这道题就是求包含最长上升子序列的区间的总数
代码及思路如下
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
#define MAX 100100
using namespace std;
long long a[MAX];// 存的是读取的数
long long c[MAX];//记录序列长度为下标时的结束的最靠右的元素的下标
long long dp[MAX];//记录以当前元素结尾的序列的最大长度
long long first[MAX];//记录以当前元素结尾的序列的最大长度的序列最靠右的起点
int n;
//寻找到当前节点作为末尾元素的序列最长时的长度
int bsearch ( long long num )
{
int left = 0 , right = n , mid;
while ( left != right )
{
mid = left + right >> 1;
if ( num > a[c[mid]] && num <= a[c[mid+1]] )
return mid;
if ( num > a[c[mid]] ) left = mid+1;
else right = mid;
}
return left;
}
int main ( )
{
while ( ~scanf ( "%d" , &n ) )
{
for ( int i = 1 ; i <= n ; i++ )
scanf ( "%lld" , &a[i]) ;
int ans = 0;
memset ( c , 0 , sizeof ( c ) );
c[0] = 100007;
a[100007] = 0;
a[0] = 0xffffffff;
long long temp;
for ( int i = 1; i <= n ; i++ )
{
temp = bsearch ( a[i] );
if ( temp == 0 ) first[i] = i;
else first[i] = first[c[temp]];
( a[i] <= a[c[temp+1]] ) && (c[temp+1] = i );
ans = max ( temp + 1, ans*1LL );
dp[i] = temp + 1;
}
long long res = 0;
for ( int i = 1 ; i <= n ; i++ )
{
if ( dp[i-1] == ans )
if ( dp[i] < dp[i-1] )
dp[i] = dp[i-1] , first[i] = first[i-1];
if ( dp[i] == ans ) res += first[i];
}
printf ( "%lld\n" , res );
}
}