给定一个边长为n的正方形,还有足够的k*1的矩形砖,问能够铺满最大面积
首先考虑如果k>n,那么面积一定是0 ( 没考虑这个wa了一次T_T )
如果你n%k == 0 ,那么一定能够铺满
如果n%k!= 0,那么一定不能铺满,那么有两种摆放方式,一种是将空出n%k边长正方形等大的面积,另一种是空出与n-n%k为边长的正方形等大的面积,因为剩下的面积被填充的最大可能就是集中在一起,因为n%k和n-n%k小于k,所以一定不能再填充
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int main ( )
{
int t,n,k;
scanf ( "%d" , &t );
while ( t-- )
{
scanf ( "%d%d" , &n , &k );
int area = n*n;
if ( k > n )
{
puts ( "0" );
continue;
}
if ( n%k )
{
int x = n%k;
x = min ( k - x , x );
area -= x*x;
}
printf ( "%d\n" , area );
}
}