codeforces 161D D. Distance in Tree(树形dp)

本文介绍了一个解决树形结构中,找到路径长度为特定值k的所有点对数量的方法。通过使用动态规划,作者详细解释了如何通过递归地构建一个状态转移矩阵来解决这个问题。最终,通过遍历这个矩阵并应用一个简单的公式,计算出符合条件的点对总数,并进行了代码实现验证。
摘要由CSDN通过智能技术生成

题目链接:

codeforces 161D


题目大意:

给出一棵树,每条边的边权是1,问两点之间的路径长度为k的点对有多少个?


题目分析:

  • 定义状态dp[i][k]代表以i为根的子树中的点到达点i的长度为k的点的个数。定义V为与u相邻的点的集合,p是u的父亲
  • 然后转移方程很简单:
    dp[u][j]=vVdp[v][j1]
  • 然后我们利用处理出来的dp数组可以再做一个操作,将它变成点i到所有点中路径长度等于k的个数。
  • 转移方程如下:
    dp[u][j]+=dp[p][j1]dp[u][j2]
  • 就是因为父亲已经被维护过,所以现在dp[p][j-1]表示p点到所有点中长度为k的点的个数,再减去那些存在于当前子树中的点,然后就是非u的子树中的点到u的距离为j的点的个数,最后枚举每个点,统计他们 ni=1dp[u][k] ,因为每条符合要求的路径算了两次,所以最后结果要除以2。

AC代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <algorithm>
#define MAX 50007

using namespace std;

typedef long long LL;

int n,k,a,b;
LL dp[MAX][507],ans;
vector<int> e[MAX];

void add ( int u , int v )
{
    e[u].push_back ( v );
    e[v].push_back ( u );
}

void Clear ( )
{
    for ( int i = 0 ; i < MAX ; i++ )
        e[i].clear();
}

void dfs ( int u , int p )
{
    dp[u][0] = 1;
    for ( int i = 1 ; i <= k ; i++ )
        dp[u][i] = 0;
    for ( int i = 0 ; i < e[u].size() ; i++ )
    {
        int v = e[u][i];
        if ( v == p ) continue;
        dfs ( v , u );
        for ( int j = 1 ; j <= k ; j++ )
            dp[u][j] += dp[v][j-1];
    }
}

void solve ( int u , int p )
{
    for ( int i = 0 ; i < e[u].size() ; i++ )
    {
        int v = e[u][i];
        if ( v == p ) continue;
        for ( int j = k; j >= 1 ; j-- )
        {
            dp[v][j] += dp[u][j-1];
            if ( j > 1 ) dp[v][j] -= dp[v][j-2];
        }
        solve ( v , u );
    }
}

int main ( )
{
    while ( ~scanf ( "%d%d" , &n , &k ) )
    {
        Clear();
        for ( int i = 1 ; i < n ; i++ )
        {
            scanf ( "%d%d" , &a , &b );
            add ( a , b );
        }
        ans = 0;
        dfs ( 1 , -1 );
        solve ( 1 , -1 );
        /*for ( int i = 1; i <= n ; i++ )
            for ( int j = 0 ; j <= k ; j++ )
                cout << i << " " << j << " " << dp[i][j] << endl;*/
        for ( int i = 1 ; i <= n ; i++ )
            ans += dp[i][k];
        printf ( "%I64d\n" , ans/2LL );
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值