👉 点击关注不迷路
👉 点击关注不迷路
👉 点击关注不迷路
medical - pills.yaml
- 通常用于配置
与医学药丸检测任务
相关的参数和信息
- 通常用于配置
Objects365.yaml
- 用于配置与 Objects365 数据集相关信息的文件。Objects365 数据集包含
365 个不同的物体类别
,该文件会定义这些类别的名称和对应的索引。
- 用于配置与 Objects365 数据集相关信息的文件。Objects365 数据集包含
open-images-v7.yaml
- 是针对 Open Images V7 数据集的配置文件,
在相关的计算机视觉任务(如目标检测、图像分类等)中具有重要作用。
- 是针对 Open Images V7 数据集的配置文件,
在 YOLO 框架中,
medical-pills.yaml、Objects365.yaml、open-images-v7.yaml
均为 数据集配置文件,用于告诉模型如何读取和处理特定数据集,核心作用如下:
-
- 数据集路径配置
-
- 类别定义: 类别名称与编号映射
-
- 数据划分与格式适配
-
- 训练 / 验证 / 测试集划分:
-
- 特殊格式处理(部分文件):
- 部分文件可能包含数据转换逻辑(如 open-images-v7.yaml 涉及通过 fiftyone 库将原始数据集转换为 YOLO 可识别的格式)。
-
总结
- 这些文件是 YOLO 模型与具体数据集之间的 “桥梁”,
核心功能是 告知模型 “数据在哪里” 和 “目标有哪些类别”,确保模型能正确加载数据、训练并输出符合预期的检测结果
。 - 用户训练自定义数据集时,需按此格式编写自己的 dataset.yaml,定义路径和类别即可快速适配 YOLO 框架。
- 这些文件是 YOLO 模型与具体数据集之间的 “桥梁”,
-
Open Images V7
- 由 Google 发布的大规模
计算机视觉数据集,专为目标检测、图像分类、语义分割等任务设计
。 - 图像总量:
约 900 万张,覆盖自然场景、日常生活、工业环境等多样化场景
。- 190 万张密集标注图像:包含
边界框、实例分割、视觉关系、本地化叙述(语音 + 文本 + 鼠标轨迹)和点标签。
- 710 万张图像级标注:仅包含图像级分类标签(如 “动物”“交通工具”)。
- 190 万张密集标注图像:包含
- 标注类型:
- 边界框:1600 万个,覆盖 600 个物体类别(如汽车、行人、家具),由专业标注员手工绘制,平均每张图像 8.3 个物体。
- 实例分割:280 万个,覆盖
350 个类别(如猫、桌子、树),提供像素级轮廓。
- 视觉关系:330 万条,描述物体间关系(如 “人骑自行车”“书在桌子上”)。
- 本地化叙述:67.5 万条,结合语音、文本和鼠标轨迹,描述图像中的复杂场景(如 “左侧有一个红色背包,右侧是打开的笔记本电脑”)。
- 点标签(V7 新增):6640 万个,覆盖 5827 个类别(如 “草”“花岗岩”“砾石”),通过
稀疏像素点标注实现零样本 / 少样本语义分割
。 - 图像级标签:6140 万个,覆盖 20,638 个类别(如 “晴天”“室内场景”)。
- 核心优势
- 多任务统一标注:
同一数据集支持图像分类、目标检测、分割、视觉关系理解等任务,便于多模态模型训练
。 - 长尾类别覆盖:
包含大量罕见物体
(如 “犰狳”“旱獭”)和细粒度类别
(如 “红熊猫” vs “大熊猫”),提升模型泛化能力
。 - 标注质量高: 边界框和分割掩码由专业人员标注,点标签通过 “模型建议 + 人工验证” 方式生成,准确率达 90% 以上。
- 规模庞大: 190 万密集标注图像是当前最大的目标检测 / 分割数据集之一,适合训练高性能模型。
- 多任务统一标注:
- 由 Google 发布的大规模
-
medical-pills.yaml、Objects365.yaml、open-images-v7.yaml
数据集配置文件作用简要流程图
Objects365.yaml
-
# 数据集根目录,相对于当前配置文件的路径 path: ../datasets/Objects365 # 训练集图像所在的相对路径,相对于数据集根目录 train: images/train # 验证集图像所在的相对路径,相对于数据集根目录 val: images/val # 测试集图像所在的相对路径,这里为空,表示未指定 test: # 数据集中所有类别的名称,键为类别编号,值为类别名称 names: # 定义数据集中各类别的名称映射 0: Person # 编号0代表“人”这个类别 1: Sneakers # 编号1代表“运动鞋” 2: Chair # 编号2代表“椅子” 3: Other Shoes # 编号3代表“其他鞋子” 4: Hat # 编号4代表“帽子” 5: Car # 编号5代表“汽车” 6: Lamp # 编号6代表“灯” 7: Glasses # 编号7代表“眼镜” 8: Bottle # 编号8代表“瓶子” 9: Desk # 编号9代表“书桌” 10: Cup # 编号10代表“杯子” 11: Street Lights # 编号11代表“路灯” 12: Cabinet/shelf # 编号12代表“橱柜/架子” 13: Handbag/Satchel # 编号13代表“手提包/挎包” 14: Bracelet # 编号14代表“手镯” 15: Plate # 编号15代表“盘子” 16: Picture/Frame # 编号16代表“图片/相框” 17: Helmet # 编号17代表“头盔” 18: Book # 编号18代表“书” 19: Gloves # 编号19代表“手套” 20: Storage box # 编号20代表“储物箱” 21: Boat # 编号21代表“船” 22: Leather Shoes # 编号22代表“皮鞋” 23: Flower # 编号23代表“花” 24: Bench # 编号24代表“长凳” 25: Potted Plant # 编号25代表“盆栽植物” 26: Bowl/Basin # 编号26代表“碗/盆” 27: Flag # 编号27代表“旗帜” 28: Pillow # 编号28代表“枕头” 29: Boots # 编号29代表“靴子” 30: Vase # 编号30代表“花瓶” 31: Microphone # 编号31代表“麦克风” 32: Necklace # 编号32代表“项链” 33: Ring # 编号33代表“戒指” 34: SUV # 编号34代表“运动型多用途汽车(SUV)” 35: Wine Glass # 编号35代表“葡萄酒杯” 36: Belt # 编号36代表“皮带” 37: Monitor/TV # 编号37代表“显示器/电视” 38: Backpack # 编号38代表“背包” 39: Umbrella # 编号39代表“雨伞” 40: Traffic Light # 编号40代表“交通信号灯” 41: Speaker # 编号41代表“扬声器” 42: Watch # 编号42代表“手表” 43: Tie # 编号43代表“领带” 44: Trash bin Can # 编号44代表“垃圾桶” 45: Slippers # 编号45代表“拖鞋” 46: Bicycle # 编号46代表“自行车” 47: Stool # 编号47代表“凳子” 48: Barrel/bucket # 编号48代表“桶” 49: Van # 编号49代表“厢式货车” 50: Couch # 编号50代表“沙发” 51: Sandals # 编号51代表“凉鞋” 52: Basket # 编号52代表“篮子” 53: Drum # 编号53代表“鼓” 54: Pen/Pencil # 编号54代表“钢笔/铅笔” 55: Bus # 编号55代表“公交车” 56: Wild Bird # 编号56代表“野生鸟类” 57: High Heels # 编号57代表“高跟鞋” 58: Motorcycle # 编号58代表“摩托车” 59: Guitar # 编号59代表“吉他” 60: Carpet # 编号60代表“地毯” 61: Cell Phone # 编号61代表“手机” 62: Bread # 编号62代表“面包” 63: Camera # 编号63代表“相机” 64: Canned # 编号64代表“罐头” 65: Truck # 编号65代表“卡车” 66: Traffic cone # 编号66代表“交通锥” 67: Cymbal # 编号67代表“钹” 68: Lifesaver # 编号68代表“救生圈” 69: Towel # 编号69代表“毛巾” 70: Stuffed Toy # 编号70代表“毛绒玩具” 71: Candle # 编号71代表“蜡烛” 72: Sailboat # 编号72代表“帆船” 73: Laptop # 编号73代表“笔记本电脑” 74: Awning # 编号74代表“遮阳篷” 75: Bed # 编号75代表“床” 76: Faucet # 编号76代表“水龙头” 77: Tent # 编号77代表“帐篷” 78: Horse # 编号78代表“马” 79: Mirror # 编号79代表“镜子” 80: Power outlet # 编号80代表“电源插座” 81: Sink # 编号81代表“水槽” 82: Apple # 编号82代表“苹果” 83: Air Conditioner # 编号83代表“空调” 84: Knife # 编号84代表“刀” 85: Hockey Stick # 编号85代表“曲棍球棒” 86: Paddle # 编号86代表“桨” 87: Pickup Truck # 编号87代表“皮卡” 88: Fork # 编号88代表“叉子” 89: Traffic Sign # 编号89代表“交通标志” 90: Balloon # 编号90代表“气球” 91: Tripod # 编号91代表“三脚架” 92: Dog # 编号92代表“狗” 93: Spoon # 编号93代表“勺子” 94: Clock # 编号94代表“时钟” 95: Pot # 编号95代表“锅” 96: Cow # 编号96代表“奶牛” 97: Cake # 编号97代表“蛋糕” 98: Dining Table # 编号98代表“餐桌” 99: Sheep # 编号99代表“羊” 100: Hanger # 编号100代表“衣架” 101: Blackboard/Whiteboard # 编号101代表“黑板/白板” 102: Napkin # 编号102代表“餐巾” 103: Other Fish # 编号103代表“其他鱼类” 104: Orange/Tangerine # 编号104代表“橙子/橘子” 105: Toiletry # 编号105代表“洗漱用品” 106: Keyboard # 编号106代表“键盘” 107: Tomato # 编号107代表“番茄” 108: Lantern # 编号108代表“灯笼” 109: Machinery Vehicle # 编号109代表“机动车辆” 110: Fan # 编号110代表“风扇” 111: Green Vegetables # 编号111代表“绿色蔬菜” 112: Banana # 编号112代表“香蕉” 113: Baseball Glove # 编号113代表“棒球手套” 114: Airplane # 编号114代表“飞机” 115: Mouse # 编号115代表“鼠标” 116: Train # 编号116代表“火车” 117: Pumpkin # 编号117代表“南瓜” 118: Soccer # 编号118代表“足球” 119: Skiboard # 编号119代表“滑雪板” 120: Luggage # 编号120代表“行李” 121: Nightstand # 编号121代表“床头柜” 122: Tea pot # 编号122代表“茶壶” 123: Telephone # 编号123代表“电话” 124: Trolley # 编号124代表“手推车” 125: Head Phone # 编号125代表“耳机” 126: Sports Car # 编号126代表“跑车” 127: Stop Sign # 编号127代表“停车标志” 128: Dessert # 编号128代表“甜点” 129: Scooter # 编号129代表“滑板车” 130: Stroller # 编号130代表“婴儿车” 131: Crane # 编号131代表“起重机” 132: Remote # 编号132代表“遥控器” 133: Refrigerator # 编号133代表“冰箱” 134: Oven # 编号134代表“烤箱” 135: Lemon # 编号135代表“柠檬” 136: Duck # 编号136代表“鸭子” 137: Baseball Bat # 编号137代表“棒球棒” 138: Surveillance Camera # 编号138代表“监控摄像头” 139: Cat # 编号139代表“猫” 140: Jug # 编号140代表“罐子” 141: Broccoli # 编号141代表“西兰花” 142: Piano # 编号142代表“钢琴” 143: Pizza # 编号143代表“披萨” 144: Elephant # 编号144代表“大象” 145: Skateboard # 编号145代表“滑板” 146: Surfboard # 编号146代表“冲浪板” 147: Gun # 编号147代表“枪” 148: Skating and Skiing shoes # 编号148代表“滑冰和滑雪鞋” 149: Gas stove # 编号149代表“煤气灶” 150: Donut # 编号150代表“甜甜圈” 151: Bow Tie # 编号151代表“领结” 152: Carrot # 编号152代表“胡萝卜” 153: Toilet # 编号153代表“马桶” 154: Kite # 编号154代表“风筝” 155: Strawberry # 编号155代表“草莓” 156: Other Balls # 编号156代表“其他球类” 157: Shovel # 编号157代表“铲子” 158: Pepper # 编号158代表“胡椒” 159: Computer Box # 编号159代表“电脑机箱” 160: Toilet Paper # 编号160代表“卫生纸” 161: Cleaning Products # 编号161代表“清洁用品” 162: Chopsticks # 编号162代表“筷子” 163: Microwave # 编号163代表“微波炉” 164: Pigeon # 编号164代表“鸽子” 165: Baseball # 编号165代表“棒球” 166: Cutting/chopping Board # 编号166代表“切菜板” 167: Coffee Table # 编号167代表“咖啡桌” 168: Side Table # 编号168代表“边桌” 169: Scissors # 编号169代表“剪刀” 170: Marker # 编号170代表“记号笔” 171: Pie # 编号171代表“派” 172: Ladder # 编号172代表“梯子” 173: Snowboard # 编号173代表“滑雪板” 174: Cookies # 编号174代表“饼干” 175: Radiator # 编号175代表“散热器” 176: Fire Hydrant # 编号176代表“消防栓” 177: Baseball <-- 此处疑似数据重复或有误,与编号165重复,若文件无误,编号177代表“棒球” 178: Zebra # 编号178代表“斑马” 179: Grape # 编号179代表“葡萄” 180: Giraffe # 编号180代表“长颈鹿” 181: Potato # 编号181代表“土豆” 182: Sausage # 编号182代表“香肠” 183: Tricycle # 编号183代表“三轮车” 184: Violin # 编号184代表“小提琴” 185: Egg # 编号185代表“鸡蛋” 186: Fire Extinguisher # 编号186代表“灭火器” 187: Candy # 编号187代表“糖果” 188: Fire Truck # 编号188代表“消防车” 189: Billiards # 编号189代表“台球” 190: Converter # 编号190代表“转换器” 191: Bathtub # 编号191代表“浴缸” 192: Wheelchair # 编号192代表“轮椅” 193: Golf Club # 编号193代表“高尔夫球杆” 194: Briefcase # 编号194代表“公文包” 195: Cucumber # 编号195代表“黄瓜” 196: Cigar/Cigarette # 编号196代表“雪茄/香烟” 197: Paint Brush # 编号197代表“画笔” 198: Pear # 编号198代表“梨” 199: Heavy Truck # 编号199对应的类别是重型卡车,在相关数据集中,当检测到或涉及到重型卡车相关的实例时,会用199这个编号来标记。 200: Hamburger # 编号200代表汉堡包,在图像识别等任务里,若识别出汉堡包,会以200作为其类别标识。 201: Extractor # 编号201表示提取器,可能是各种用于提取物质或信息的设备,在数据集中属于这一类别的物体将以此编号区分。 202: Extension Cord # 编号202指延长线,在对相关场景进行分析时,延长线的实例会被归类到编号202对应的类别。 203: Tong # 编号203代表钳子,通常用于夹持物品的工具,在数据集中用这个编号标识钳子类物体。 204: Tennis Racket # 编号204是网球拍,在涉及网球拍的图像或数据样本中,该物体的类别编号为204 。 205: Folder # 编号205表示文件夹,用于存放文件纸张等的容器,数据集中文件夹类别的实例会用此编号标记。 206: American Football # 编号206代表美式橄榄球,在相关数据标注中,美式橄榄球的实例将被赋予编号206。 207: earphone # 编号207指耳机,无论是头戴式、入耳式等各种类型耳机,在数据集中都属于这个编号对应的类别。 208: Mask # 编号208表示口罩或面具,在识别任务里,口罩或面具的实例会以208作为类别编号。 209: Kettle # 编号209代表水壶,通常用于烧水或盛装液体的容器,在数据集中用这个编号标识水壶类物体。 210: Tennis # 编号210是网球,在网球相关的图像或数据样本中,网球这一物体的类别编号为210 。 211: Ship # 编号211表示船,涵盖各种类型的船只,在涉及船的图像或数据中,该物体的类别编号为211。 212: Swing # 编号212代表秋千,在场景分析或图像识别中,秋千的实例会被归类到编号212对应的类别。 213: Coffee Machine # 编号213指咖啡机,用于制作咖啡的设备,数据集中咖啡机类别的实例会用此编号标记。 214: Slide # 编号214表示滑梯,在相关场景进行分析时,滑梯的实例会被赋予编号214。 215: Carriage # 编号215代表马车或车厢,在数据标注中,马车或车厢的实例将被赋予编号215。 216: Onion # 编号216指洋葱,在涉及洋葱的图像或数据样本中,洋葱这一物体的类别编号为216 。 217: Green beans # 编号217代表青豆,在数据集中,青豆类别的实例会用编号217来标记。 218: Projector # 编号218表示投影仪,在图像识别等任务里,投影仪的实例会以218作为其类别标识。 219: Frisbee # 编号219指飞盘,在相关数据标注中,飞盘的实例将被赋予编号219。 220: Washing Machine/Drying Machine # 编号220代表洗衣机/烘干机,在数据集中,洗衣机或烘干机的实例会用此编号标记。 221: Chicken # 编号221表示鸡(活鸡或作为食物的鸡肉),在识别任务里,鸡的实例会以221作为类别编号。 222: Printer # 编号222指打印机,用于打印文件等的设备,数据集中打印机类别的实例会用此编号标记。 223: Watermelon # 编号223代表西瓜,在涉及西瓜的图像或数据样本中,西瓜这一物体的类别编号为223 。 224: Saxophone # 编号224表示萨克斯管,在场景分析或图像识别中,萨克斯管的实例会被归类到编号224对应的类别。 225: Tissue # 编号225指纸巾,在相关场景进行分析时,纸巾的实例会被赋予编号225。 226: Toothbrush # 编号226代表牙刷,在数据标注中,牙刷的实例将被赋予编号226。 227: Ice cream # 编号227表示冰淇淋,在涉及冰淇淋的图像或数据样本中,冰淇淋这一物体的类别编号为227 。 228: Hot-air balloon # 编号228代表热气球,在图像识别等任务里,热气球的实例会以228作为其类别标识。 229: Cello # 编号229表示大提琴,在相关数据标注中,大提琴的实例将被赋予编号229。 230: French Fries # 编号230代表炸薯条,在数据集中,炸薯条类别的实例会用此编号标记。 231: Scale # 编号231表示秤,用于测量物体重量的工具,数据集中秤类别的实例会用此编号标记。 232: Trophy # 编号232代表奖杯,在识别任务里,奖杯的实例会以232作为类别编号。 233: Cabbage # 编号233指卷心菜,在涉及卷心菜的图像或数据样本中,卷心菜这一物体的类别编号为233 。 234: Hot dog # 编号234代表热狗,在相关场景进行分析时,热狗的实例会被赋予编号234。 235: Blender # 编号235表示搅拌机,用于搅拌食物等的设备,数据集中搅拌机类别的实例会用此编号标记。 236: Peach # 编号236代表桃子,在涉及桃子的图像或数据样本中,桃子这一物体的类别编号为236 。 237: Rice # 编号237表示大米或米饭,在数据集中,大米或米饭类别的实例会用编号237来标记。 238: Wallet/Purse # 编号238代表钱包,在图像识别等任务里,钱包的实例会以238作为其类别标识。 239: Volleyball # 编号239代表排球,在相关数据标注中,排球的实例将被赋予编号239。 240: Deer # 编号240表示鹿,在识别任务里,鹿的实例会以240作为类别编号。 241: Goose # 编号241代表鹅,在涉及鹅的图像或数据样本中,鹅这一物体的类别编号为241 。 242: Tape # 编号242指胶带或磁带,在相关场景进行分析时,胶带或磁带的实例会被赋予编号242。 243: Tablet # 编号243表示平板电脑,在数据标注中,平板电脑的实例将被赋予编号243。 244: Cosmetics # 编号244代表化妆品,在数据集中,化妆品类别的实例会用此编号标记。 245: Trumpet # 编号245表示小号,在场景分析或图像识别中,小号的实例会被归类到编号245对应的类别。 246: Pineapple # 编号246代表菠萝,在涉及菠萝的图像或数据样本中,菠萝这一物体的类别编号为246 。 247: Golf Ball # 编号247代表高尔夫球,在相关数据标注中,高尔夫球的实例将被赋予编号247。 248: Ambulance # 编号248表示救护车,在图像识别等任务里,救护车的实例会以248作为其类别标识。 249: Parking meter # 编号249代表停车计时器,在相关场景进行分析时,停车计时器的实例会被赋予编号249。 250: Mango # 编号250代表芒果,在涉及芒果的图像或数据样本中,芒果这一物体的类别编号为250 。 251: Key # 编号251表示钥匙,在数据标注中,钥匙的实例将被赋予编号251。 252: Hurdle # 编号252代表跨栏,在场景分析或图像识别中,跨栏的实例会被归类到编号252对应的类别。 253: Fishing Rod # 编号253代表钓鱼竿,在相关场景进行分析时,钓鱼竿的实例会被赋予编号253。 254: Medal # 编号254代表奖章,在数据标注中,奖章的实例将被赋予编号254。 255: Flute # 编号255表示长笛,在场景分析或图像识别中,长笛的实例会被归类到编号255对应的类别。 256: Brush # 编号256代表刷子,涵盖各种类型的刷子,在数据集中刷子类别的实例会用此编号标记。 257: Penguin # 编号257代表企鹅,在识别任务里,企鹅的实例会以257作为类别编号。 258: Megaphone # 编号258代表扩音器,在相关数据标注中,扩音器的实例将被赋予编号258。 259: Corn # 编号259代表玉米,在涉及玉米的图像或数据样本中,玉米这一物体的类别编号为259 。 260: Lettuce # 编号260代表生菜,在数据集中,生菜类别的实例会用编号260来标记。 261: Garlic # 编号261代表大蒜,在涉及大蒜的图像或数据样本中,大蒜这一物体的类别编号为261 。 262: Swan # 编号262代表天鹅,在识别任务里,天鹅的实例会以262作为类别编号。 263: Helicopter # 编号263表示直升机,在相关场景进行分析时,直升机的实例会被赋予编号263。 264: Green Onion # 编号264代表葱,在数据标注中,葱的实例将被赋予编号264。 265: Sandwich # 编号265代表三明治,在数据集中,三明治类别的实例会用此编号标记。 266: Nuts # 编号266代表坚果,在涉及坚果的图像或数据样本中,坚果这一物体的类别编号为266 。 267: Speed Limit Sign # 编号267代表限速标志,在场景分析或图像识别中,限速标志的实例会被归类到编号267对应的类别。 268: Induction Cooker # 编号268代表电磁炉,在相关场景进行分析时,电磁炉的实例会被赋予编号268。 269: Broom # 编号269代表扫帚,在数据标注中,扫帚的实例将被赋予编号269。 270: Trombone # 编号270表示长号,在场景分析或图像识别中,长号的实例会被归类到编号270对应的类别。 271: Plum # 编号271代表李子,在涉及李子的图像或数据样本中,李子这一物体的类别编号为271 。 272: Rickshaw # 编号272代表人力车,在相关数据标注中,人力车的实例将被赋予编号272。 273: Goldfish # 编号273代表金鱼,在识别任务里,金鱼的实例会以273作为类别编号。 274: Kiwi fruit # 编号274代表猕猴桃,在涉及猕猴桃的图像或数据样本中,猕猴桃这一物体的类别编号为274 。 275: Router/modem # 编号275代表路由器/调制解调器,在数据集中,路由器或调制解调器类别的实例会用此编号标记。 276: Poker Card # 编号276代表扑克牌,在相关场景进行分析时,扑克牌的实例会被赋予编号276。 277: Toaster # 编号277代表烤面包机,在数据标注中,烤面包机的实例将被赋予编号277。 278: Shrimp # 编号278代表虾,在涉及虾的图像或数据样本中,虾这一物体的类别编号为278 。 279: Sushi # 编号279代表寿司,在数据集中,寿司类别的实例会用编号279来标记。 280: Cheese # 编号280代表奶酪,在涉及奶酪的图像或数据样本中,奶酪这一物体的类别编号为280 。 281: Notepaper # 编号281代表便签纸,在相关场景进行分析时,便签纸的实例会被赋予编号281。 282: Cherry # 编号282代表樱桃,在涉及樱桃的图像或数据样本中,樱桃这一物体的类别编号为282 。 283: Pliers # 编号283代表钳子(与编号203的“Tong”类似,可能存在不同表述或细分差异 ),在数据标注中,此类钳子的实例将被赋予编号283。 284: CD # 编号284代表光盘,在场景分析或图像识别中,光盘的实例会被归类到编号284对应的类别。 285: Pasta # 编号285代表意大利面,在数据集中,意大利面类别的实例会用此编号标记。 286: Hammer # 编号286代表锤子,在相关场景进行分析时,锤子的实例会被赋予编号286。 287: Cue # 编号287代表球杆(通常指台球杆等 ),在数据标注中,球杆的实例将被赋予编号287。 288: Avocado # 编号288代表牛油果,在涉及牛油果的图像或数据样本中,牛油果这一物体的类别编号为288 。 289: Hami melon # 编号289代表哈密瓜,在数据集中,哈密瓜类别的实例会用编号289来标记。 290: Flask # 编号290代表烧瓶或保温瓶,在相关场景进行分析时,烧瓶或保温瓶的实例会被赋予编号290。 291: Mushroom # 编号291代表蘑菇,在涉及蘑菇的图像或数据样本中,蘑菇这一物体的类别编号为291 。 292: Screwdriver # 编号292代表螺丝刀,在数据标注中,螺丝刀的实例将被赋予编号292。 293: Soap # 编号293代表肥皂,在场景分析或图像识别中,肥皂的实例会被归类到编号293对应的类别。 294: Recurrent <-- 此处疑似有误,推测可能是“Recorder”(录音机 ),若按推测,编号294代表录音机,在相关场景进行分析时,录音机的实例会被赋予编号294(若原词无误,需根据实际情况确定含义 )。 295: Bear # 编号295代表熊,在识别任务里,熊的实例会以295作为类别编号。 296: Eggplant # 编号296代表茄子,在涉及茄子的图像或数据样本中,茄子这一物体的类别编号为296 。 297: Board Eraser # 编号297代表黑板擦,在数据标注中,黑板擦的实例将被赋予编号297。 298: Coconut # 编号298代表椰子,在涉及椰子的图像或数据样本中,椰子这一物体的类别编号为298 。 299: Tape Measure/Ruler # 编号299代表卷尺/尺子,在数据集中,卷尺或尺子类别的实例会用此编号标记。 300: Pig # 编号300代表猪,在识别任务里,猪的实例会以300作为类别编号。 301: Showerhead # 编号301代表淋浴喷头,在相关场景进行分析时,淋浴喷头的实例会被赋予编号301。 302: Globe # 编号302代表地球仪,在数据标注中,地球仪的实例将被赋予编号302。 303: Chips # 编号303代表薯片或芯片(具体含义需结合数据集实际情况确定 ),在场景分析或图像识别中,此类物体的实例会被归类到编号303对应的类别。 304: Steak # 编号304代表牛排,在涉及牛排的图像或数据样本中,牛排这一物体的类别编号为304 。 305: Crosswalk Sign # 编号305代表人行横道标志,在相关场景进行分析时,人行横道标志的实例会被赋予编号305。 306: Stapler # 编号306代表订书机,在数据标注中,订书机的实例将被赋予编号306。 307: Camel # 编号307代表骆驼,在识别任务里,骆驼的实例会以307作为类别编号。 308: Formula 1 # 编号308代表一级方程式赛车,在相关数据标注中,一级方程式赛车的实例将被赋予编号308。 309: Pomegranate # 编号309对应的类别是石榴,在相关的目标检测或分类任务中,若识别出石榴这个物体,其类别编号即为309。 310: Dishwasher # 编号310代表洗碗机,当数据集中出现洗碗机相关的实例时,会用310作为该物体的类别标识。 311: Crab # 编号311表示螃蟹,在处理涉及螃蟹的图像或数据样本时,螃蟹这一物体的类别编号为311 。 312: Hoverboard # 编号312指悬浮滑板,在相关场景分析或图像识别中,悬浮滑板的实例会被归类到编号312对应的类别。 313: Meatball # 编号313代表肉丸,在数据标注里,肉丸的实例将被赋予编号313。 314: Rice Cooker # 编号314表示电饭煲,在涉及电饭煲的图像或数据中,该物体的类别编号为314。 315: Tuba # 编号315代表大号(一种乐器),在相关数据标注中,大号的实例将被赋予编号315。 316: Calculator # 编号316指计算器,在数据集中,计算器类别的实例会用编号316来标记。 317: Papaya # 编号317代表木瓜,在涉及木瓜的图像或数据样本中,木瓜这一物体的类别编号为317 。 318: Antelope # 编号318表示羚羊,在识别任务里,羚羊的实例会以318作为类别编号。 319: Parrot # 编号319代表鹦鹉,在相关场景进行分析时,鹦鹉的实例会被赋予编号319。 320: Seal # 编号320代表海豹,在数据标注中,海豹的实例将被赋予编号320。 321: Butterfly # 编号321表示蝴蝶,在场景分析或图像识别中,蝴蝶的实例会被归类到编号321对应的类别。 322: Dumbbell # 编号322代表哑铃,在相关场景进行分析时,哑铃的实例会被赋予编号322。 323: Donkey # 编号323代表驴,在数据标注中,驴的实例将被赋予编号323。 324: Lion # 编号324代表狮子,在识别任务里,狮子的实例会以324作为类别编号。 325: Urinal # 编号325代表小便池,在相关数据标注中,小便池的实例将被赋予编号325。 326: Dolphin # 编号326代表海豚,在涉及海豚的图像或数据样本中,海豚这一物体的类别编号为326 。 327: Electric Drill # 编号327表示电钻,在数据集中,电钻类别的实例会用编号327来标记。 328: Hair Dryer # 编号328代表吹风机,在相关场景进行分析时,吹风机的实例会被赋予编号328。 329: Egg tart # 编号329代表蛋挞,在数据标注中,蛋挞的实例将被赋予编号329。 330: Jellyfish # 编号330代表水母,在场景分析或图像识别中,水母的实例会被归类到编号330对应的类别。 331: Treadmill # 编号331代表跑步机,在相关场景进行分析时,跑步机的实例会被赋予编号331。 332: Lighter # 编号332代表打火机,在数据标注中,打火机的实例将被赋予编号332。 333: Grapefruit # 编号333代表葡萄柚,在涉及葡萄柚的图像或数据样本中,葡萄柚这一物体的类别编号为333 。 334: Game board # 编号334代表游戏板,在数据集中,游戏板类别的实例会用编号334来标记。 335: Mop # 编号335代表拖把,在相关场景进行分析时,拖把的实例会被赋予编号335。 336: Radish # 编号336代表萝卜,在涉及萝卜的图像或数据样本中,萝卜这一物体的类别编号为336 。 337: Baozi # 编号337代表包子,在数据标注中,包子的实例将被赋予编号337。 338: Target # 编号338代表靶子,在场景分析或图像识别中,靶子的实例会被归类到编号338对应的类别。 339: French # 此处“French”单独作为类别不太明确,如果结合数据集可能表示法国相关事物,如法国面包(法棍)、法式菜肴等;也可能是录入错误,需结合实际数据集确定。 340: Spring Rolls # 编号340代表春卷,在涉及春卷的图像或数据样本中,春卷这一物体的类别编号为340 。 341: Monkey # 编号341代表猴子,在识别任务里,猴子的实例会以341作为类别编号。 342: Rabbit # 编号342代表兔子,在相关场景进行分析时,兔子的实例会被赋予编号342。 343: Pencil Case # 编号343代表铅笔盒,在数据标注中,铅笔盒的实例将被赋予编号343。 344: Yak # 编号344代表牦牛,在涉及牦牛的图像或数据样本中,牦牛这一物体的类别编号为344 。 345: Red Cabbage # 编号345代表紫甘蓝,在数据集中,紫甘蓝类别的实例会用编号345来标记。 346: Binoculars # 编号346代表双筒望远镜,在相关场景进行分析时,双筒望远镜的实例会被赋予编号346。 347: Asparagus # 编号347代表芦笋,在涉及芦笋的图像或数据样本中,芦笋这一物体的类别编号为347 。 348: Barbell # 编号348代表杠铃,在数据标注中,杠铃的实例将被赋予编号348。 349: Scallop # 编号349代表扇贝,在场景分析或图像识别中,扇贝的实例会被归类到编号349对应的类别。 350: Noddles # 疑似拼写错误,应为“Noodles”,编号350代表面条,在数据集中,面条类别的实例会用编号350来标记(若原词无误,需根据实际情况确定含义 )。 351: Comb # 编号351代表梳子,在相关场景进行分析时,梳子的实例会被赋予编号351。 352: Dumpling # 编号352代表饺子,在数据标注中,饺子的实例将被赋予编号352。 353: Oyster # 编号353代表牡蛎,在场景分析或图像识别中,牡蛎的实例会被归类到编号353对应的类别。 354: Table Tennis paddle # 编号354代表乒乓球拍,在涉及乒乓球拍的图像或数据样本中,乒乓球拍这一物体的类别编号为354 。 355: Cosmetics Brush/Eyeliner Pencil # 编号355代表化妆刷/眼线笔,在数据集中,化妆刷或眼线笔类别的实例会用编号355来标记。 356: Chainsaw # 编号356代表电锯,在相关场景进行分析时,电锯的实例会被赋予编号356。 357: Eraser # 编号357代表橡皮擦,在数据标注中,橡皮擦的实例将被赋予编号357。 358: Lobster # 编号358代表龙虾,在场景分析或图像识别中,龙虾的实例会被归类到编号358对应的类别。 359: Durian # 编号359代表榴莲,在涉及榴莲的图像或数据样本中,榴莲这一物体的类别编号为359 。 360: Okra # 编号360代表秋葵,在数据集中,秋葵类别的实例会用编号360来标记。 361: Lipstick # 编号361代表口红,在相关场景进行分析时,口红的实例会被赋予编号361。 362: Cosmetics Mirror # 编号362代表化妆镜,在数据标注中,化妆镜的实例将被赋予编号362。 363: Curling # 编号363代表冰壶(运动)或卷发(造型行为),在相关数据标注中,根据数据集的具体指向,冰壶或与卷发相关物品的实例将被赋予编号363(需结合实际确定 )。 364: Table Tennis # 编号364代表乒乓球(运动或乒乓球物体 ),在涉及乒乓球运动场景或乒乓球物体的图像数据中,该实例的类别编号为364。 # 从pathlib模块导入Path类,用于处理文件路径,提供了更方便、面向对象的文件路径操作方式 from pathlib import Path # 导入numpy库并简写成np,用于数值计算 import numpy as np # 从tqdm库导入tqdm,用于显示进度条,直观展示任务的进度 from tqdm import tqdm # 从ultralytics.utils.checks模块导入check_requirements函数,用于检查所需的Python库是否安装 from ultralytics.utils.checks import check_requirements # 从ultralytics.utils.downloads模块导入download函数,用于下载文件 from ultralytics.utils.downloads import download # 从ultralytics.utils.ops模块导入xyxy2xywhn函数,用于将边界框坐标格式从xyxy转换为xywhn(归一化的xywh格式) from ultralytics.utils.ops import xyxy2xywhn # 检查是否安装了pycocotools库,并且版本是否大于等于2.0,若未安装或版本不满足要求,会提示安装 check_requirements(("pycocotools>=2.0",)) # 从pycocotools.coco模块导入COCO类,用于处理COCO数据集格式的标注文件 from pycocotools.coco import COCO # Make Directories # 获取数据集根目录路径,从yaml配置文件中读取"path"字段的值,创建Path对象 dir = Path(yaml["path"]) # 遍历"images"和"labels",为每个目录创建对应的文件夹 for p in "images", "labels": # 创建目录,如果父目录不存在则创建,exist_ok=True表示如果目录已存在则不报错 (dir / p).mkdir(parents=True, exist_ok=True) # 对于每个"images"和"labels"目录,再分别创建"train"和"val"子目录 for q in "train", "val": (dir / p / q).mkdir(parents=True, exist_ok=True) # Train, Val Splits # 遍历训练集和验证集的相关参数,split为数据集的划分("train"或"val"),patches为相应划分的文件块数量 for split, patches in [("train", 50 + 1), ("val", 43 + 1)]: # 打印当前正在处理的数据集划分和文件块数量信息 print(f"Processing {split} in {patches} patches ...") # 构建当前数据集划分的图像和标签目录路径 images, labels = dir / "images" / split, dir / "labels" / split # Download # 构建下载数据集文件的基础URL url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/" if split == "train": # 下载训练集的标注文件(压缩格式)到数据集根目录 download([f"{url}zhiyuan_objv2_{split}.tar.gz"], dir=dir) # 并行下载训练集的图像文件块到图像目录,curl=True表示使用curl进行下载,threads=8表示使用8个线程加速下载 download([f"{url}patch{i}.tar.gz" for i in range(patches)], dir=images, curl=True, threads=8) elif split == "val": # 下载验证集的标注文件(JSON格式)到数据集根目录 download([f"{url}zhiyuan_objv2_{split}.json"], dir=dir) # 分两部分下载验证集的图像文件块到图像目录,先下载v1部分,再下载v2部分,都使用curl和8个线程 download([f"{url}images/v1/patch{i}.tar.gz" for i in range(15 + 1)], dir=images, curl=True, threads=8) download([f"{url}images/v2/patch{i}.tar.gz" for i in range(16, patches)], dir=images, curl=True, threads=8) # Move # 遍历当前图像目录下所有的.jpg文件,tqdm用于显示进度条 for f in tqdm(images.rglob("*.jpg"), desc=f"Moving {split} images"): # 将图像文件移动到当前数据集划分的图像目录下,文件名不变 f.rename(images / f.name) # Labels # 加载当前数据集划分的标注文件,创建COCO对象 coco = COCO(dir / f"zhiyuan_objv2_{split}.json") # 获取数据集中所有类别的名称 names = [x["name"] for x in coco.loadCats(coco.getCatIds())] # 遍历每个类别 for cid, cat in enumerate(names): # 获取当前类别的类别ID catIds = coco.getCatIds(catNms=[cat]) # 获取包含当前类别的所有图像的ID imgIds = coco.getImgIds(catIds=catIds) # 遍历包含当前类别的每一幅图像 for im in tqdm(coco.loadImgs(imgIds), desc=f"Class {cid + 1}/{len(names)} {cat}"): # 获取图像的宽度和高度 width, height = im["width"], im["height"] # 获取图像的文件名 path = Path(im["file_name"]) try: # 打开对应的标签文件,以追加模式写入,编码为utf-8 with open(labels / path.with_suffix(".txt").name, "a", encoding="utf-8") as file: # 获取当前图像中当前类别的所有标注ID annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None) # 遍历每个标注 for a in coco.loadAnns(annIds): # 获取标注的边界框坐标(xywh格式,左上角坐标和宽高) x, y, w, h = a["bbox"] # 将xywh格式转换为xyxy格式(左上角和右下角坐标),并转换为numpy数组 xyxy = np.array([x, y, x + w, y + h])[None] # 将xyxy格式的边界框坐标转换为归一化的xywhn格式,clip=True表示裁剪超出图像边界的坐标 x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # 将类别ID和归一化后的边界框坐标写入标签文件 file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n") except Exception as e: # 如果在处理过程中出现异常,打印异常信息 print(e)
open-images-v7.yaml
-
# 导入warnings模块,用于处理警告信息 import warnings # 从ultralytics.utils模块中导入LOGGER(用于记录日志)、SETTINGS(包含一些设置信息)、Path(用于处理文件路径)、get_ubuntu_version(获取Ubuntu系统版本号)、is_ubuntu(判断是否为Ubuntu系统) from ultralytics.utils import LOGGER, SETTINGS, Path, get_ubuntu_version, is_ubuntu # 从ultralytics.utils.checks模块中导入check_requirements(检查所需的Python库是否安装)和check_version(检查库的版本号) from ultralytics.utils.checks import check_requirements, check_version # 检查是否安装了fiftyone库,如果未安装则提示安装 check_requirements("fiftyone") # 判断当前系统是否为Ubuntu且版本号大于等于22.04,如果是则检查是否安装了fiftyone-db-ubuntu2204库 if is_ubuntu() and check_version(get_ubuntu_version(), ">=22.04"): check_requirements("fiftyone-db-ubuntu2204") # 导入fiftyone库并简写成fo,fiftyone是一个用于计算机视觉数据集管理和分析的库 import fiftyone as fo # 导入fiftyone.zoo模块并简写成foz,用于加载预定义的数据集 import fiftyone.zoo as foz # 定义数据集名称为open-images-v7 name = "open-images-v7" # 设置fiftyone库中数据集的存储目录,将其设置为ultralytics的数据集目录下的fiftyone/open-images-v7路径 fo.config.dataset_zoo_dir = Path(SETTINGS["datasets_dir"]) / "fiftyone" / name # 设置加载数据集样本的比例,这里设置为1.0表示加载全部样本 fraction = 1.0 # 记录一条警告日志,提示Open Images V7数据集至少需要561GB的可用空间,并开始下载 LOGGER.warning("WARNING ⚠️ Open Images V7 dataset requires at least **561 GB of free space. Starting download...") # 遍历'train'和'validation',分别处理训练集和验证集 for split in "train", "validation": # 判断当前处理的是否为训练集 train = split == "train" # 从fiftyone的数据集库中加载open-images-v7数据集 dataset = foz.load_zoo_dataset( name, # 数据集名称 split=split, # 数据集划分,'train'或'validation' label_types=["detections"], # 标签类型,这里是检测任务的标签 # 根据训练集或验证集的样本数量以及设定的比例,计算要加载的最大样本数 max_samples=round((1743042 if train else 41620) * fraction) ) # 如果当前处理的是训练集,获取训练集的所有类别 if train: classes = dataset.default_classes # 捕获警告信息,忽略fiftyone.utils.yolo模块中UserWarning类型的警告 with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning, module="fiftyone.utils.yolo") # 将加载的数据集导出为YOLOv5数据集格式 dataset.export( export_dir=str(Path(SETTINGS["datasets_dir"]) / name), # 导出目录,为ultralytics数据集目录下的open-images-v7 dataset_type=fo.types.YOLOv5Dataset, # 导出的数据集类型为YOLOv5数据集 label_field="ground_truth", # 标签字段名 split="val" if split == "validation" else split, # 如果是验证集则导出为val划分,否则使用原划分名称 classes=classes, # 数据集的类别列表(仅在训练集时有效) overwrite=train # 如果是训练集则覆盖已存在的文件,否则不覆盖 )
飞机、航空器;飞机;闹钟;羊驼;救护车;动物;蚂蚁
;羚羊;苹果;犰狳;洋蓟;汽车零部件;
斧头;背包;百吉饼;烘焙食品;平衡木;球;气球;香蕉
;创可贴;班卓琴;驳船;桶;棒球棒;- 棒球手套;蝙蝠(动物);浴室配件;
浴室柜;浴缸;烧杯;熊;床
;蜜蜂;蜂巢;啤酒;甲虫;
甜椒;皮带;长椅;自行车;自行车头盔;自行车轮
;坐浴盆;广告牌
;台球桌;双筒望远镜;鸟;搅拌机
; - 冠蓝鸦;
船;炸弹;书;书架;靴子;瓶子;开瓶器
;弓和箭;碗;保龄球设备;盒子;男孩;胸罩; - 面包;公文包;西兰花;青铜雕塑;棕熊;建筑物;公牛;墨西哥卷饼;
公共汽车;半身像;蝴蝶;卷心菜;橱柜;蛋糕;
- 蛋糕架;计算器;骆驼;相机;开罐器;金丝雀;蜡烛;糖果;大炮;独木舟;哈密瓜;
汽车;食肉动物;胡萝卜;手推车;
- 卡带机;城堡;猫;猫用家具;毛毛虫;
牛;吊扇;大提琴;蜈蚣;电锯;椅子
;奶酪;猎豹; - 五斗柜;鸡;编钟;凿子;筷子;圣诞树;时钟;壁橱;衣物;外套;鸡尾酒;鸡尾酒摇壶;
- 椰子;
咖啡;咖啡杯;咖啡桌;咖啡机;
硬币;无花果;向日葵;计算机键盘;计算机显示器; - 计算机鼠标;
容器;便利店;饼干;烹饪喷雾;有线电话;化妆品
;沙发;台面;牛仔帽;螃蟹; - 奶油;板球;鳄鱼;
羊角面包;皇冠;拐杖;黄瓜;碗柜
;窗帘;切菜板;匕首;乳制品;鹿;
书桌;甜点;尿布;骰子;
数字时钟;恐龙;洗碗机;狗;狗床;
玩偶;海豚;门;门把手;甜甜圈;蜻蜓;- 抽屉;连衣裙;电钻(工具);
饮料;吸管;鼓;鸭子;哑铃;鹰
;耳环;鸡蛋(食物);大象;信封;橡皮擦; - 粉饼;面巾纸盒;猎鹰;时尚配饰;快餐;传真机;软毡帽;
文件柜;消防栓;壁炉;鱼;
旗帜;手电筒;花;花盆;长笛;飞盘;食物;
食品加工机;橄榄球;橄榄球头盔;鞋类;叉子;喷泉;狐狸;- 炸薯条;法国号;
青蛙;水果;煎锅;家具;芦笋
;煤气炉;长颈鹿;女孩;眼镜;手套;山羊;
- 护目镜;金鱼;高尔夫球;高尔夫球车;贡多拉;鹅;
葡萄;葡萄柚;研磨机;
鳄梨酱;吉他;吹风机;发胶;
- 汉堡包;锤子;仓鼠;干手器;手提包;手枪;港海豹;口琴;竖琴;羽管键琴;
帽子;耳机;
加热器;刺猬; - 直升机;头盔;高跟鞋;徒步装备;
河马;家用电器;蜂巢;单杠;马;热狗;房子;
- 室内植物;
人的手臂;人的胡须;人体;人的耳朵;人的眼睛;人的脸;人的脚;人的头发;人的手;人的头;
人的腿;人的嘴;人的鼻子;加湿器;
冰淇淋;室内划船机;婴儿床;昆虫;无脊椎动物;iPod(苹果公司音乐播放器);等足目动物;夹克;- 按摩浴缸;美洲豹(动物);牛仔裤;水母;喷气式滑艇;罐子;果汁;袋鼠;水壶;厨房和餐厅桌子;厨房电器;
- 菜刀;厨房用具;厨房 ware;风筝;刀;考拉;梯子;长柄勺;瓢虫;
灯;陆地车辆;灯笼;笔记本电脑;
- 薰衣草(植物);柠檬;豹;
电灯泡;电灯开关;灯塔;百合;
豪华轿车;狮子;口红;蜥蜴;龙虾; 双人沙发;行李和包;
猞猁;喜鹊;哺乳动物;男人;芒果;枫树;沙球;海洋无脊椎动物;海洋哺乳动物;量杯;- 机械风扇;医疗设备;
麦克风;微波炉;牛奶;迷你裙;镜子;导弹;搅拌器;
搅拌碗;移动电话; 猴子;
蛾和蝴蝶;摩托车;老鼠;松饼;马克杯;骡子;蘑菇;乐器;音乐键盘
- 钉子(建筑用)、项链、床头柜、双簧管、办公楼、办公用品、橙子、管风琴(乐器)、
鸵鸟、
- 水獭、烤箱、
猫头鹰、牡蛎、桨、棕榈树、煎饼、熊猫、裁纸刀、纸巾、降落伞
、停车计时器、鹦鹉、意大利面、 糕点、桃子、梨、钢笔、铅笔盒、卷笔刀、企鹅、香水、人
、个人护理用品- 个人漂浮装置、钢琴、野餐篮、相框、
猪、枕头、菠萝、水罐(容器)
、披萨、披萨刀、 植物、塑料袋、盘子、大浅盘
、管道装置、北极熊、石榴、爆米花、门廊、豪猪、海报、土豆、- 电源插头和插座、高压锅、椒盐卷饼、打印机、
南瓜、沙袋、兔子、浣熊、球拍、萝卜
、棘轮(装置)、 - 渡鸦、魟鱼和鳐鱼、小熊猫、冰箱、遥控器、
爬行动物、犀牛、步枪
、活页夹、火箭、旱冰鞋、玫瑰、 - 橄榄球、尺子、沙拉、盐和胡椒瓶、凉鞋、三明治、茶碟、萨克斯管、
秤、围巾、剪刀、记分牌
、蝎子、 - 螺丝刀、雕塑、海狮、海龟、海鲜、海马、
安全带、平衡车、托盘、缝纫机
、鲨鱼、羊、架子、 - 贝类、衬衫、短裤、猎枪、淋浴器、虾、水槽、滑板、滑雪板、裙子、头骨、臭鼬、摩天大楼、慢炖锅、小吃、蜗牛、
蛇、滑雪板、雪人、雪地摩托、扫雪机
、肥皂分配器、袜子、沙发床、宽边帽、麻雀、锅铲、调味架、蜘蛛、- 勺子、体育器材、运动制服、南瓜(植物)、鱿鱼、松鼠、
楼梯、订书机、海星、健身自行车
、听诊器、 凳子、停车标志、草莓、路灯、担架
、摄影棚长沙发、潜艇、潜艇三明治(长潜艇形三明治)、套装、手提箱、太阳帽、太阳镜、- 冲浪板、寿司、天鹅、
游泳帽、游泳池、泳衣、剑、注射器
、桌子、乒乓球拍、平板电脑
、餐具、 - 墨西哥玉米卷、坦克、水龙头、果馅饼、出租车、茶、茶壶、泰迪熊、电话、电视、网球、网球拍、帐篷、冠状头饰、蜱虫、领带、
- 老虎、罐头、
轮胎、烤面包机、马桶、卫生纸、番茄、工具、牙刷
、手电筒、乌龟、毛巾、塔、玩具、交通信号灯
、 交通标志、火车、训练长椅
、跑步机、树、树屋、三脚架、长号、裤子、卡车
、小号、火鸡、海龟、- 雨伞、
独轮车、厢式货车、花瓶、蔬菜、车辆
、车牌、小提琴、排球(球)、华夫饼、华夫饼烤盘、 挂钟、衣柜、洗衣机、垃圾桶、手表、船只、西瓜
、武器、鲸鱼、轮子、轮椅、打蛋器、白板、柳树、窗户、百叶窗、葡萄酒、葡萄酒杯、酒架、冬瓜、炒锅
、女人、烧木柴的炉子、- 啄木鸟、虫子、扳手、斑马、西葫芦