LR的原理及损失函数,和线性回归的区别

本文深入探讨逻辑回归的本质,将其视为带有sigmoid函数的线性回归。详细解释了如何通过极大似然估计和梯度上升求解参数,以及逻辑回归与线性回归的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层逻辑函数sigmoid(z),即先把特征线性求和,然后使用函数sigmoid(z)作为假设函数来预测。

求解过程:

而sigmoid 的导数是:

逻辑回归用来分类0/1 问题,也就是预测结果属于0 或者1 的二值分类问题。这里假设了二值满足伯努利分布,也就是

所以对于训练集,其极大似然函数是:

先取ln利于计算:

然后需要进行极大似然估计,使用梯度上升来求极大值:

这里要求梯度增量

对于SDG,

而LR的损失函数而是:

 

逻辑回归相对于线性回归:

逻辑回归是在线性函数后添加了sigmoid从而将回归问题变成了分类问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值