ElasticSearch : Index 和 Type 的区别

对于 ES 的新用户来说,有一个常见的问题:要存储一批新的数据时,应该在已有 index 里新建一个 type,还是给它新建一个 index?要想回答这个问题,我们必须先理解这两者是怎么实现的。

过去,我们为了让 ES 更容易理解,经常用关系型数据库做一个比喻: index 就像关系型数据库里的 database, type 就像 database 里的 table。但是这并不正确。由于两种数据库存储数据的方式是如此不同,任何比喻都是没有意义的。这种比喻往往会导致对 type 的滥用。
什么是 shard(分片)

一个 分片 是一个底层的 工作单元 ,它仅保存了全部数据中的一部分,一个分片是一个 Lucene 的实例,它本身就是一个完整的搜索引擎。

在ES中,分片是数据的容器,文档保存在分片内,分片又被分配到集群内的各个节点里。

我们的文档被存储和索引到分片内,但是应用程序是直接与索引 Index 而不是与分片进行交互。

Elasticsearch 是利用分片将数据分发到集群内各处的当你的集群规模扩大或者缩小时, Elasticsearch 会自动的在各节点中迁移分片,使得数据仍然均匀分布在集群里。

注意:技术上来说,一个主分片最大能够存储 Integer.MAX_VALUE - 128 个文档,但是实际最大值还需要参考你的使用场景:包括你使用的硬件,文档的大小和复杂程度,索引和查询文档的方式以及你期望的响应时长。

主分片:在索引建立的时候就已经确定了主分片数,但是副本分片数可以随时修改,索引内任意一个文档都归属于一个主分片,所以主分片的数目决定着索引能够保存的最大数据量。
副分片:一个副本分片只是一个主分片的拷贝。副本分片作为硬件故障时保护数据不丢失的冗余备份,并为搜索和返回文档等读操作提供服务。
什么是 Index (索引)

我们的数据被存储和索引在分片(shards)中

索引是指向一个或者多个物理 分片的逻辑命名空间    (有点类似软连接)

我们面对的是索引,至于索引如何关联分片,那是ES内部的逻辑

索引命名规范这个名称必须全部小写,不能以下划线开头,不能包含逗号。

Index 存储在多个分片中(index指向的内容被分配在多个分片),其中每一个分片都是一个独立的 Lucene Index。

少创建 Index 好处

1、每个 Lucene Index 都需要消耗一些磁盘,内存和文件描述符。因此,一个大的 index 比多个小 index 效率更高:Lucene Index 的固定开销被摊分到更多文档上了。

2、在搜索多个Index时,每个Index下的所有分片都需要搜索一次, 然后 ES 会合并来自所有分片的结果,会消耗大量资源。

例如,你要搜索 10 个 index,每个 index 有 5 个分片,那么协调这次搜索的节点就需要合并 5x10=50 个分片的结果。如果有太多分片的结果需要合并,或者你发起了一个结果巨大的搜索请求,合并任务会消耗大量 CPU 和内存资源。
什么是 type

使用 type 允许我们在一个 index 里存储多种类型的数据,这样就可以减少 index 的数量了。在使用时,向每个文档加入 _type 字段,在指定 type 搜索时就会被用于过滤。使用 type 的一个好处是,搜索一个 index 下的多个 type,和只搜索一个 type 相比没有额外的开销 —— 需要合并结果的分片数量是一样的。

但是,这也是有限制的:

    不同 type 里的字段需要保持一致。例如,一个 index 下的不同 type 里有两个名字相同的字段,他们的类型(string, date 等等)和配置也必须相同。
    只在某个 type 里存在的字段,在其他没有该字段的 type 中也会消耗资源。
    这是 Lucene Index 带来的常见问题:它不喜欢稀疏。由于连续文档之间的差异太大,稀疏的 posting list 的压缩效率不高。这个问题在 doc value 上更为严重:为了提高速度,doc value 通常会为每个文档预留一个固定大小的空间,以便文档可以被高速检索。这意味着,如果 Lucene 确定它需要一个字节来存储某个数字类型的字段,它同样会给没有这个字段的文档预留一个字节。
    得分是由 index 内的统计数据来决定的。也就是说,一个 type 中的文档会影响另一个 type 中的文档的得分。

应该用哪个

这是个困难的问题,它的答案取决于你用的硬件、数据和用例。

首先你要明白 type 是有用的,因为它能减少 ES 需要管理的 Lucene Index 的数量。但是也有另外一种方式可以减少这个数量:创建 index 的时候让它的分片少一些。例如,与其在一个 index 里塞上 5 个 type,不如创建 5 个只有一个分片的 index。

在你做决定的时候可以问自己下面几个问题:

    你需要使用父子文档吗?如果需要,只能在一个 index 里建立多个 type。
    你的文档的映射是否相似?如果不相似,使用多个 index。
    如果你的每个 type 都有足够多的文档,Lucene Index 的开销可以被分摊掉,你就可以安全的使用多个 index 了。如果有必要的话,可以把分片数量设小一点。
    如果文档不够多,你可以考虑把文档放进一个 index 里的多个 type 里,甚至放进一个 type 里。

总之,你可能有点惊讶,因为 type 的使用场景没有你想象的多,这是正确的。由于我们上面提到原因,在一个 index 中使用多个 type 的情景其实很少。如果你的数据有不同的映射,那就给他们分配不同的 index。但是请记住,如果不需要很高的写入吞吐量,或者存储的文档数量不多,你可以通过减少 index 的分片来使集群中的分片数量保持合理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值