
Elasticsearch
文章平均质量分 96
码到π退休
CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c=1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编程,高并发设计,Springboot和微服务,熟悉Linux,ESXI虚拟化以及云原生Docker和K8s,热衷于探索科技的边界,并将理论知识转化为实际应用。在这里,我希望能与志同道合的朋友交流探讨,共同进步,一起在技术的世界里不断学习成长。技术合作请加本人wx(注明来自csdn):foreast_sea
展开
-
【Elasticsearch】实现气象数据存储与查询系统
移动端可微信小程序搜索“”)总架构师,15年工作经验,精通Java编程高并发设计,熟悉LinuxESXI虚拟化以及,热衷于探索科技的边界,并将理论知识转化为实际应用。保持对新技术的好奇心,乐于分享所学,希望通过我的实践经历和见解,启发他人的创新思维。在这里,我希望能与志同道合的朋友交流探讨,共同进步,一起在技术的世界里不断学习成长。请加本人wx(注明来自csdn。原创 2025-05-03 11:28:43 · 2080 阅读 · 49 评论 -
【Elasticsearch】开启大数据分析的探索与预处理之旅
本案例将利用 Elasticsearch 的 Java API 来连接到 Elasticsearch 集群,实现数据的索引创建、数据插入、数据搜索与聚合等操作,从而完成数据探索与预处理的任务。我们将以一个包含海量文本数据的数据集为例,通过 Elasticsearch 的搜索和聚合功能,探索文本的主题分布、关键词频率等信息。在大数据分析领域,作为一款强大的数据存储和探索工具,为数据科学家提供了高效处理海量数据的能力。通过本文的详细介绍,我们了解了的相关数据类型、索引结构等基础知识,掌握了如何使用。原创 2025-04-05 11:28:12 · 2109 阅读 · 17 评论 -
【Elasticsearch】监控与管理:集群安全管理
用户认证:确保只有经过身份验证的用户才能访问集群。角色授权:为不同用户分配不同的权限,限制其对集群资源的访问。数据加密:通过加密技术保护数据在传输和存储过程中的安全性。审计日志:记录用户的操作行为,便于事后审计和追踪。除了内置角色,Elasticsearch 还允许创建自定义角色。上述命令创建了一个名为的角色,该角色具有monitor集群权限,并且对my_index索引具有read权限。Elasticsearch 提供了强大的安全机制,包括用户认证、角色授权、数据加密和审计日志等功能。原创 2025-02-19 00:15:00 · 2947 阅读 · 49 评论 -
【Elasticsearch】 监控与管理:索引管理策略
Elasticsearch 的索引管理是一个复杂但至关重要的任务。通过合理的索引生命周期管理、备份与恢复策略,我们可以确保数据的高效存储和快速恢复,从而保障业务的连续性。本文详细介绍了如何使用 Java API 进行索引的创建、删除、备份与恢复,并结合实际案例,展示了如何在实际项目中应用这些策略。希望本文能够帮助开发者更好地理解和应用 Elasticsearch 的索引管理策略,提升系统的稳定性和可靠性。原创 2025-02-17 00:15:00 · 2146 阅读 · 67 评论 -
【Elasticsearch】监控与管理:集群健康检查
Green:表示集群处于完全健康状态,所有主分片和副本分片都已分配且正常运行。Yellow:表示集群的主分片已分配,但部分副本分片未分配。这种情况通常发生在集群节点不足或副本分片无法分配到其他节点时。Red:表示集群中至少有一个主分片未分配,这可能导致数据丢失或查询失败。Elasticsearch 集群的健康检查是确保系统稳定运行的重要环节。通过本文的介绍,我们了解了如何使用 Java API 检查集群的健康状态,并深入分析了分片分配、副本同步等关键指标。原创 2025-02-14 10:30:56 · 2871 阅读 · 56 评论 -
【Elasticsearch】监控与管理:集群监控指标
Elasticsearch 集群监控是指通过对 Elasticsearch 集群的各项运行指标进行实时采集、分析和展示,从而全面了解集群的健康状况、性能表现以及资源使用情况的过程。监控的目标是及时发现潜在问题,并采取相应的优化措施,以保障集群的稳定性和高效性。通过对 Elasticsearch 集群监控指标的深入分析和实践,我们能够全面了解集群的运行状态,并采取相应的优化措施以保障系统的稳定性和高效性。随着业务规模的不断扩大和技术的发展,Elasticsearch 集群监控的需求也将变得更加多样化和复杂化。原创 2025-02-12 00:15:00 · 2836 阅读 · 69 评论 -
【Elasticsearch】集群配置性能优化
集群响应时间在业务高峰期呈指数级上升 节点频繁OOM导致服务不可用 数据分片分布失衡引发热点问题 网络拥塞造成跨机房同步延迟这些问题的根源往往在于集群角色规划失当、网络参数配置粗放、监控体系缺失三大症结。本文将以Elasticsearch 8.8版本为基础,深度解析集群优化的核心技术路径。通过角色分离策略、TCP层深度调优、全链路监控体系三大核心模块,结合Java API实战案例,构建高可用、高性能的ES集群架构。原创 2025-02-10 00:15:00 · 3085 阅读 · 86 评论 -
【Elasticsearch】 查询性能优化
在ES中,查询执行计划是指查询请求在集群中的分片之间如何分发和执行的过程。理解查询执行计划对于优化查询性能至关重要。查询解析:Elasticsearch 首先解析查询请求,确定查询的类型和条件。分片选择:根据查询条件,Elasticsearch 选择需要查询的分片。查询分发:将查询请求分发到选定的分片上。查询执行:在各个分片上执行查询,并返回结果。结果合并:将各个分片的查询结果合并,返回给客户端。原创 2025-02-07 00:15:00 · 4525 阅读 · 103 评论 -
【Elasticsearch】索引性能优化
在ES中,索引(Index)是一个逻辑命名空间,用于存储具有相似特征的文档。可以将索引类比为关系型数据库中的数据库,它是文档的集合。每个索引都有一个唯一的名称,通过这个名称可以对索引进行各种操作,如创建删除查询等。例如,在一个电商系统中,我们可以创建一个名为products的索引,用于存储所有商品的信息。每个商品信息就是一个文档,这些文档都存储在products索引中。原创 2025-02-05 14:27:14 · 2713 阅读 · 79 评论 -
【Elasticsearch】硬件资源优化
Elasticsearch 采用分布式架构,由多个节点组成集群。每个节点都可以存储数据、处理请求。其中,有主节点负责集群的管理和协调,数据节点负责实际的数据存储和检索,协调节点负责接收客户端请求并将其转发到合适的数据节点。这种分布式架构使得 Elasticsearch 能够轻松应对大规模数据和高并发查询。例如,在一个电商搜索系统中,可能有多个数据节点分别存储不同品类的商品数据,协调节点接收到用户的搜索请求后,会根据请求的内容将其分发到相应的数据节点进行查询,最后汇总结果返回给用户。原创 2025-02-03 03:00:00 · 3161 阅读 · 72 评论 -
【Elasticsearch 】自定义分词器
在当今数字化信息爆炸的时代,文本数据的处理和分析变得至关重要。无论是搜索引擎、信息检索系统,还是智能客服、文本挖掘等应用场景,都离不开对文本的准确理解和分析。而在这一过程中,分词作为文本处理的基础环节,其效果直接影响到后续的数据分析和应用效果。Elasticsearch 作为一款强大的分布式搜索引擎,提供了丰富的文本分析功能。然而,在实际的业务场景中,默认的分词器往往无法满足特定语言、业务需求或复杂文本处理要求。例如,在处理一些专业领域的文本时,如医学、法律等,需要根据专业术语和行业规范进行分词;原创 2025-01-30 00:30:00 · 3195 阅读 · 76 评论 -
【Elasticsearch】内置分词器和IK分词器
Elasticsearch是一个基于Lucene的分布式、RESTful风格的搜索和数据分析引擎。它旨在快速地存储、搜索和分析大量的数据,被广泛应用于各种领域,如日志分析、电商搜索、企业内容管理等。Elasticsearch的核心优势在于其分布式架构,能够处理PB级别的数据,并提供高可用性和可扩展性。它通过将数据分片存储在多个节点上,实现数据的并行处理和容错能力。同时,提供了简单易用的,方便开发者进行数据的索引搜索和管理。原创 2025-01-27 21:18:02 · 4613 阅读 · 67 评论 -
【Elasticsearch】聚合分析:管道聚合
聚合分析在 Elasticsearch 中是一种强大的数据分析工具,它允许我们对存储在 Elasticsearch 索引中的数据进行统计、分组和汇总操作。通过聚合,我们可以从大量的文档数据中提取有意义的信息,例如计算文档的数量、求和、求平均值、分组统计等。聚合分析的核心概念是将数据按照某种规则进行分组,然后对每个分组内的数据进行特定的计算。例如,我们有一个包含销售记录的索引,每条记录包含销售时间、销售金额、销售地区等字段。我们可以按照销售地区进行分组,然后计算每个地区的总销售额、平均销售额等。原创 2025-01-26 12:08:18 · 2930 阅读 · 73 评论 -
【Elasticsearch】聚合分析:度量聚合
度量聚合是 Elasticsearch 聚合分析中的一种类型,它主要用于对文档中的数值字段进行统计计算。与其他类型的聚合(如桶聚合用于分组数据)不同,度量聚合的重点在于对数据进行数值上的操作,以获取诸如总和、平均值、最大值等统计信息。例如,在一个包含员工薪资信息的索引中,我们可以使用度量聚合来计算所有员工的总薪资、平均薪资等。通过这些计算结果,我们可以快速了解薪资的整体情况,为人力资源决策提供数据支持。原创 2025-01-24 11:08:41 · 3002 阅读 · 94 评论 -
【Elasticsearch 】 聚合分析:桶聚合
Elasticsearch 是一个基于 Lucene 的分布式、RESTful 风格的搜索和数据分析引擎。它旨在快速存储、搜索和分析大量数据,广泛应用于各种领域,如日志分析、电商搜索、企业搜索等。的桶聚合功能为我们提供了强大的数据分组和分析能力,尤其是嵌套桶聚合能够帮助我们深入挖掘数据的内在结构和分布规律。通过合理设计嵌套层次和聚合操作,结合实际业务需求,我们可以从海量数据中获取有价值的信息,为决策提供有力支持。无论是在电商、金融、日志分析还是其他领域,桶聚合都有着广泛的应用前景。原创 2025-01-21 23:49:02 · 2239 阅读 · 91 评论 -
【Elasticsearch 】 聚合分析:聚合概述
在当今数字化时代,数据如同浩瀚的海洋,蕴含着无尽的价值。然而,如何从海量的数据中提取出有意义的信息,成为了众多开发者和数据分析师面临的重要挑战。作为一款强大的分布式搜索引擎,不仅提供了高效的搜索功能,其聚合分析功能更是为我们在数据海洋中挖掘宝藏提供了有力的工具。的聚合分析功能允许我们对存储在其中的数据进行深入的统计分析和分组计算。想象一下,你拥有一个包含数百万条用户行为记录的数据集,你可能想知道不同年龄段的用户购买了哪些产品,或者某个时间段内网站的平均访问时长是多少。这些看似复杂的问题,通过。原创 2025-01-20 13:38:12 · 3011 阅读 · 74 评论 -
【Elasticsearch】全文搜索与相关性排序
Elasticsearch 是一个基于 Lucene 的分布式、RESTful 风格的开源搜索引擎。它旨在提供分布式环境下的全文搜索、结构化搜索以及分析功能。Elasticsearch 具备高可用性、可扩展性和高性能等特点,能够处理 PB 级别的数据。通过深入了解 Elasticsearch 的全文搜索原理和相关性排序机制,我们能够充分发挥其强大的搜索功能,为用户提供更加高效准确的搜索体验。在实际应用中,我们需要根据具体的业务需求,合理运用文本分析、倒排索引以及各种排序策略,不断优化搜索性能和结果质量。原创 2025-01-17 00:15:00 · 2571 阅读 · 73 评论 -
【Elasticsearch】filterQuery过滤查询
Elasticsearch 是一个基于 Lucene 的分布式、RESTful 风格的搜索和数据分析引擎。它旨在快速、高效地存储、搜索和分析大量数据,被广泛应用于各种领域,如日志分析、电商搜索、企业搜索等。其分布式架构允许它轻松处理 PB 级别的数据,并能在多台服务器上进行水平扩展,以满足不同规模的业务需求。原创 2025-01-15 23:15:37 · 3213 阅读 · 84 评论 -
【Elasticsearch】 复合查询
在开始深入探讨复合查询之前,我们首先需要了解如何在 Java 项目中使用 Elasticsearch。Elasticsearch 提供了官方的 Java 客户端库,开发者可以通过 Maven 或 Gradle 将其引入到项目中。通过本文的介绍,我们深入探讨了 Elasticsearch 中的复合查询,特别是bool 查询的使用方法。我们还介绍了其他常见的复合查询类型,如constant_score 查询和dis_max 查询,并通过实际的 Java 代码示例展示了如何在实际开发中灵活运用这些查询类型。原创 2025-01-12 01:15:00 · 2629 阅读 · 68 评论 -
【Elasticsearch】批量操作:优化性能
提高效率在处理大量数据时,逐条操作不仅耗时,还会对系统造成极大的负担。批量操作通过将多条操作合并为一条请求,显著提升了处理效率。例如,在一次批量操作中,可以同时执行多条插入、更新或删除操作,减少了网络开销和系统资源消耗。 减少系统开销每次HTTP请求都会产生一定的开销,包括连接建立、数据传输等。批量操作通过减少请求次数,降低了这些开销,从而提升了系统性能和响应速度。原创 2025-01-10 00:15:00 · 4013 阅读 · 74 评论 -
【Elasticsearch】文档操作:添加、更新和删除
Elasticsearch是一个基于Lucene库的分布式、RESTful风格的搜索和数据分析引擎。它具有高度可扩展性、实时性和强大的搜索功能,能够快速地存储、检索和分析海量数据。其核心概念包括索引(Index)、文档(Document)和映射(Mapping)等。索引(Index):类似于关系型数据库中的数据库,是具有相似特征的文档的集合。文档(Document):是Elasticsearch中的基本数据单元,以JSON格式存储,可以包含多个字段。映射(Mapping)原创 2025-01-06 12:30:00 · 2986 阅读 · 98 评论 -
【Elasticsearch】索引创建、修改、删除与查看
是一个基于Lucene库的分布式、RESTful风格的搜索和数据分析引擎。它具有高可扩展性高性能实时性等特点,能够快速地存储、检索和分析大量的数据。采用了分布式架构,数据被分布存储在多个节点上,通过集群的方式实现数据的冗余和负载均衡。它支持多种数据类型,包括文本数字日期等,并提供了丰富的查询语法和分析功能,如全文搜索模糊搜索聚合分析等。原创 2025-01-03 00:15:00 · 5344 阅读 · 105 评论 -
【Elasticsearch】集群配置深度解析与实践
在Elasticsearch集群中,节点可以扮演不同的角色,每个角色都有其特定的职责和功能。主节点(Master Node):主节点负责管理集群的状态,如创建和删除索引、分配分片等。一个集群中可以有多个主节点候选节点,但在同一时刻只有一个主节点处于活动状态。主节点需要具备较高的稳定性和性能,因为它对集群的正常运行起着关键作用。数据节点(Data Node):数据节点负责存储和处理数据,即保存索引的分片数据并执行搜索、索引等操作。原创 2025-01-01 00:15:00 · 2927 阅读 · 85 评论 -
【Elasticsearch】数据分布与路由机制
ES是一个基于Lucene库的开源分布式搜索引擎,提供了强大的全文搜索、结构化搜索和分析功能。它具有高可用性、可扩展性和实时性等特点,广泛应用于日志分析、监控系统、电子商务、社交媒体等领域。除了使用默认的路由计算方式,Elasticsearch还支持自定义路由。自定义路由可以让我们根据特定的业务需求,将文档路由到指定的分片上。例如,我们可以根据文档的某个字段的值来进行路由计算。要使用自定义路由,我们需要在创建索引时指定路由字段。原创 2024-12-27 04:01:44 · 2519 阅读 · 76 评论 -
【Elasticsearch】分片与副本机制:优化数据存储与查询性能
是一个基于Lucene库的开源分布式搜索引擎,它提供了强大的全文搜索、结构化搜索、分析和数据可视化功能。具有高度可扩展性,能够轻松处理海量数据,并在分布式环境中实现高效的数据存储和检索。分片是Elasticsearch中用于将索引数据进行水平分割的概念。一个索引可以被分割成多个分片,每个分片都是一个独立的Lucene索引,包含了部分索引数据。通过将数据分散到多个分片中,可以实现数据的分布式存储,提高系统的存储能力和处理效率。例如,假设有一个包含100万条商品信息的索引,如果将其分成10个。原创 2024-12-25 07:00:00 · 3493 阅读 · 89 评论 -
【Elasticsearch】节点与集群:架构原理与优化实践
在中,节点(Node)是一个运行中的实例。它是集群的基本组成单元,负责存储数据处理查询请求以及与其他节点进行通信。每个节点都有一个唯一的标识符,用于在集群中进行识别和通信。提供了丰富的配置参数,用于调整集群的性能和行为。本文深入探讨了节点与集群的相关知识,包括节点的类型划分、集群的工作原理以及集群的配置与优化。通过了解这些内容,我们可以更好地理解的架构和运行机制,为实际应用中的数据存储和查询提供有力支持。在实际使用时,需要根据业务需求和硬件环境合理配置节点和集群,充分发挥的优势。原创 2024-12-23 00:15:00 · 4643 阅读 · 101 评论 -
【Elasticsearch】核心概念与索引设置
索引(Index)、文档(Document)、字段(Field) 以及分片等概念构成了Elasticsearch的基础架构。索引就像是一个数据库,是存储数据的地方,但它又具有独特的分布式特性。文档则是存储在索引中的基本数据单元,类似于数据库中的一条记录。而字段是文档的组成部分,每个文档包含多个字段,用于描述不同的属性。分片则是Elasticsearch实现分布式存储和搜索的关键,它将索引分割成多个部分,分布在不同的节点上,从而提高了系统的可扩展性和性能。原创 2024-12-20 08:33:05 · 4600 阅读 · 108 评论 -
【Elasticsearch】高亮搜索:从原理到Web呈现
高亮搜索是一种在搜索结果中突出显示与查询关键词匹配部分的技术。在Elasticsearch中,它通过分析查询语句中的关键词,在搜索到的文档中找到这些关键词的位置,然后以特定的方式(如添加HTML标签)来标记这些位置,以便在显示结果时能够突出显示。分析查询:当我们发起一个包含高亮要求的搜索查询时,Elasticsearch首先会解析查询语句。它会确定查询中的关键词、查询类型(如模糊查询、精确查询等)以及其他相关的查询条件。搜索文档:然后,Elasticsearch会根据查询条件在索引的文档中进行搜索。它会原创 2024-12-18 00:15:00 · 7473 阅读 · 97 评论 -
【Elasticsearch】八种Query搜索类型详解
Elasticsearch提供了多种搜索类型,每种搜索类型都有其独特的功能和适用场景。理解这些搜索类型对于充分发挥Elasticsearch的能力至关重要。例如,在一个电商平台中,我们可能需要精确查询某个商品的特定属性(如商品ID),这时候就可能用到TermQuery;而如果要进行模糊搜索,比如搜索包含某个关键词的商品描述,可能就需要其他的搜索类型。再比如,在处理复杂的业务逻辑查询时,可能会用到BoolQuery来组合多个查询条件。原创 2024-12-16 00:15:00 · 3738 阅读 · 95 评论 -
【Elasticsearch】关键数据类型
ES是一个基于 Lucene 库的开源搜索引擎,它提供了分布式的全文搜索功能,具有高可用性、可扩展性和易于使用等特点。通过简单的 RESTful API,用户可以轻松地将数据存储到中,并进行复杂的搜索查询和数据分析。Elasticsearch 的关键数据类型为我们提供了丰富的工具来存储和处理各种类型的数据,无论是结构化数据还是非结构化数据,都能找到合适的数据类型进行高效的存储和检索。原创 2024-12-14 11:09:55 · 3489 阅读 · 101 评论 -
【Elasticsearch】实现用户行为分析
Elasticsearch 作为一款强大的分布式搜索和分析引擎,为解决用户行为分析难题提供了理想的解决方案。它具备高可扩展性、实时数据处理能力以及丰富的查询功能,能够轻松应对大规模用户行为数据的存储与分析需求。在本文,我们将深入探讨如何利用 Elasticsearch 实现用户行为分析,从应用场景分析、原理思路阐述到具体的实现步骤,逐步揭开这一场景实现的神秘面纱,助力企业在数据驱动的时代中挖掘用户行为数据的无限价值。原创 2024-12-09 00:15:00 · 3647 阅读 · 98 评论 -
【Elasticsearch】实现分布式系统日志高效追踪
Elasticsearch 的出现为解决分布式系统日志追踪问题提供了强大的解决方案。它是一个分布式、高可用、可扩展的搜索引擎和数据分析引擎。通过合理地利用 Elasticsearch 的数据类型和索引结构,我们能够有效地存储和检索分布式系统中的日志数据,进而实现跨服务的请求日志追踪,将分散的日志信息整合为完整的用户请求链路。这不仅有助于快速定位问题,还能为系统性能优化和业务流程分析提供有力支持。在本文中,我们将深入探讨如何使用 Elasticsearch 来实现分布式系统日志追踪,详细介绍相关的技术细节原创 2024-12-04 11:32:47 · 2667 阅读 · 66 评论 -
【Elasticsearch】容器日志管理:提升容器化应用运维效率
文本类型(text):用于存储容器日志中的文本内容,如日志消息主体。它会被 Elasticsearch 进行分词处理,以便进行全文搜索。例如,容器中应用程序输出的详细错误信息或普通的日志记录语句,都可以存储为文本类型。这样在查询时,可以根据关键词快速定位到相关的日志条目。关键字类型(keyword):适合存储那些不需要分词的精确值,如容器的名称、命名空间、日志级别等。以容器名称为例,它是一个确定的字符串,使用关键字类型存储可以确保精确匹配和高效的过滤操作。原创 2024-11-29 10:53:43 · 3762 阅读 · 71 评论 -
【Elasticsearch】基于 Word2Vec 实现文章抄袭检测
Word2Vec是一种高效的词向量生成模型,它的主要功能是将文本中的单词映射到低维向量空间。在这个向量空间中,语义相近的单词对应的向量距离较近。例如,“猫”和“狗”这两个语义相关的词,它们在Word2Vec生成的向量空间中的向量距离会比“猫”和“桌子”更近。这样的向量表示能够很好地捕捉单词的语义特征,为后续的文本语义分析提供基础。在本案例中,我们假设已经训练好Word2Vec模型(如需关心如何训练Word2Vec模型的朋友,请查阅博文:“原创 2024-11-26 19:43:04 · 3950 阅读 · 61 评论 -
Elasticsearch 8.16.0:革新大数据搜索的新利器
BBQ)是中一种开创性的向量数据量化方法。它的核心目标是在提高向量数据压缩率的同时,维持高召回率,并提供自定义选项。其原理是通过巧妙地结合标量量化和位向量支持来实现这一目标。在实际的数据处理中,向量数据往往占据大量的存储空间。传统的量化方法可能会在压缩数据的过程中损失一定的准确性,导致搜索结果的召回率下降。而BBQ则打破了这种局限,它能够在不影响准确性的情况下,将向量数据的压缩率提高32倍。这对于处理大型工作负载,特别是那些包含大量向量数据的应用场景来说,具有极其重要的意义。原创 2024-11-16 18:51:57 · 11847 阅读 · 104 评论 -
Spring Boot 中 ES索引刷新策略:RefreshPolicy详解
移动端可微信小程序搜索“”)总架构师,15年工作经验,精通Java编程高并发设计,熟悉LinuxESXI虚拟化以及,热衷于探索科技的边界,并将理论知识转化为实际应用。保持对新技术的好奇心,乐于分享所学,希望通过我的实践经历和见解,启发他人的创新思维。在这里,我希望能与志同道合的朋友交流探讨,共同进步,一起在技术的世界里不断学习成长。原创 2024-09-18 16:20:55 · 1770 阅读 · 21 评论 -
Springboot整合ES搜索引擎 构建文章和古诗词索引
在数字化时代,快速准确地检索文章和古诗词对于文学爱好者和研究者来说至关重要。`Elasticsearch` 作为一个强大的搜索和分析引擎,可以帮助我们轻松构建高效的搜索引擎。本文将介绍如何使用 `Spring Boot` 整合 `Elasticsearch` 来设计文章和古诗词搜索引擎的索引结构,并提供详细的代码示例和测试输出。文章和古诗词数据具有以下特点:1. **标题**:简洁地概括内容主题。2. **作者**:对于理解作品的背景和风格很重要。3. **内容**:搜索的主要对象。原创 2024-09-17 11:47:31 · 1148 阅读 · 14 评论 -
Spring Boot 结合 ES搜索引擎 实现数据库与 ES 索引同步
RocketMQ 是阿里巴巴开源的一款高性能、高可靠的分布式消息中间件,广泛应用于大规模分布式系统中。它支持多种消息模型,包括点对点、发布/订阅等,非常适合用于数据同步场景。通过使用 RocketMQ 实现 Elasticsearch 与数据库数据的实时同步,我们可以确保数据的一致性和实时性。本文详细介绍了实现步骤,并提供了完整的代码示例。希望这篇文章能帮助你理解和实现数据同步功能。原创 2024-09-21 21:15:53 · 1855 阅读 · 17 评论 -
SpringBoot整合ES搜索引擎 实现网站热搜词及热度计算
通过 Spring Boot 整合 Elasticsearch,我们可以轻松实现网站的热搜词功能,并计算每个热搜词的热度。本文详细介绍了热搜词的原理、设计思路以及实现步骤,并提供了完整的代码示例。希望这篇文章能帮助你理解和实现热搜词及热度计算功能。原创 2024-09-15 06:30:00 · 2264 阅读 · 25 评论 -
Elasticsearch 集群 和 Kibana:最新版 8.15.0 手动安装教程
和Kibana是的核心组件,分别扮演着数据存储与检索分析和数据可视化的角色。是一个基于JSON的分布式搜索和分析引擎,它提供了一个分布式多租户能力的全文搜索引擎,具有HTTP网络接口和无模式的数据索引,不依赖于任何特定的数据库结构。的设计目标之一就是它的可扩展性,它被设计为能够处理大规模数据集。此外,它还提供了近实时的搜索和分析能力,支持结构化和非结构化数据的存储索引和搜索。的分布式特性使其部署能够随着数据和查询量的增长而无缝扩展。Kibana则是一个开源的数据分析和可视化平台,作为。原创 2024-09-05 03:00:00 · 4303 阅读 · 27 评论