- 博客(13)
- 收藏
- 关注
原创 角点检测
角点指的是角的顶点,如桌角椅角墙角的顶点。数学描述上,如果一个点在两个正交的方向上都有明显导数,那么这个点是角点。直观看来,角点就是在一张图上能找到,换个角度再拍一张图,还能找到的点。最普遍使用的角点定义是Harris提出的,指的是至少在两个不同方向上有明显灰度变化的点。对于一幅灰度图片中的点(x,y)(x,y)(x,y),灰度值为I(x,y)I(x,y)I(x,y),采用一阶近似I(x+u,...
2018-11-20 18:01:25 345 1
原创 傅里叶变换详解
频域与时域的对应关系python代码https://github.com/zisang0210/imgproc.git傅里叶变换幅值谱代表着某一频率的正弦波的幅度,保留了图片的灰度信息,对图像平移不变,对图像旋转以相同角度旋转;相位谱代表了某一频率的正弦波的相位,保留了图中物体的定位信息,平移或旋转后均改变。周期为T的连续函数f(t)f(t)f(t)可由一系列正弦和余弦函数之和表示,其频率为...
2018-11-14 10:37:00 1622
原创 C++内存模型与命名空间
hpp文件与h文件的异同.hpp文件与.h文件都是header文件,但是.hpp文件中包含了函数实现,减少了需要编译的.cpp文件数量。在IDE中,不要将头文件加入到项目列表中,只需源代码,头文件由#include指令管理。为什么.hpp中包括模板函数的实现,当该.hpp文件被多个cpp用#include包含,链接时不会出现函数的重定义?以OpenCV core模块中CmdParser为例,c...
2018-11-14 09:08:48 185
原创 点击率预估
kaggle-2014-criteo-3 Idiots数据集有13维数值型特征和26维hash编码的类别型特征。评价指标是logloss,取得了0.444的成绩。主要使用了GBDT和FFM。
2017-12-12 14:56:22 1047
原创 因子分解机
FM(Factorization Machine)模型描述在点击率预估等任务中,10维的类别型特征做onehot编码后变成1000维特征,绝大多数特征取值为0,即特征稀疏。然后,某些稀疏特征经过关联得到的关联特征,例如“化妆品”类商品和“女”性,与label之间的相关性会提高。
2017-12-06 21:47:13 877
原创 从决策树到GBDT
决策树非参数模型:不能用有限个参数来描述,随样本数量变化。优点:容易解释可扩展到大规模数据,不要求对特征做预处理 能处理离散和连续值混合的输入对特征的单调变换,如log、标准化等,不敏感,只与数据的排序有关;能自动进行特征选择;可处理缺失数据等。缺点:预测正确率不高。+boosing=GBDT模型不稳定,输入数据小的变化(如一两个数据点的取值变化)会带来树结构的变化。+baggi
2017-11-14 12:07:35 342
原创 HOG特征
方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG特征通过计算和统计图像局部区域的梯度方向直方图来构成特征。
2017-10-21 10:29:15 160
原创 Harr-like特征
Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和。
2017-10-21 10:15:03 444
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人