一、引言
1、基本介绍
tsfresh 用于从时间序列或其他序列数据中进行系统特征工程。这些数据的共同点是它们按自变量排序。最常见的自变量是时间(时间序列)。比如,工业界毫秒级制程数据,不同用户连续交易数据等等。tsfresh一方面提供了大量衍生规则(统计指标计算的方法)供使用者按照自身需求单独调用;另一方面,提供了自动提取大量统计指标特征并自动进行筛选的方法。tsfresh仅特征工程模块相关功能,用于后续机器学习或深度学习算法的模型训练,不提供模型。
官网:https://tsfresh.readthedocs.io/en/latest/text/introduction.html
2、使用
二、衍生规则
tsfresh.feature_extraction.feature_calculators 模块提供了平方和、一阶差分绝对和等多种统计指标的计算方法,可直接调用进行特征提取。在平时使用的均值、方差等之外提供了新的特征提取维度。
参考文献:
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://www.jianshu.com/p/de2f7d333b9f
https://blog.csdn.net/qq_42658739/article/details/122358303
三、特征工程
tsfresh提供了大量衍生规