Tensorflow调参报错:Resource exhausted OOM when allocating tensor with shape

在进行深度学习模型训练时,遇到Tensorflow的'Resource exhausted: OOM...'错误,通常是因为GPU显存不足。问题发生在分配形状为[200,256,28,28]的张量时。解决方法包括减少批处理大小(IMAGES_PER_GPU),降低全连接层维度,增加池化层以减小网络维度,或者调整输入图像大小。如果条件允许,升级硬件设备也是有效手段。" 111519763,10294467,Ubuntu下C程序调试问题:CMake构建无法命中断点,"['Ubuntu', 'C++开发', '调试工具', 'CMake', 'VS Code插件']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

错误信息

Resource ex hausted: OOM when allocating tensor with shape[200,256,28,28] and****

这是一种调参时常遇到的问题,由于电脑显存不够而导致,我的电脑显存是8g,在调整参数 IMAGES_PER_GPU = 2时,会导致这样的错误,将其改回1错误消失(降低了batch size的大小)。
解决办法

  1. 减少Batch 的大小
  2. 分析错误的位置,在哪一层出现显卡不够,比如在全连接层出现的,则降低全连接层的维度,把2048改成1024啥的
  3. 增加pool 层,降低整个网络的维度。
  4. 修改输入图片的大小
  5. 有钱任性,换台电脑
# python train.py --logdir myLog --batch_size 256 --dropout_rate 0.5


OP_REQUIRES failed at conv_ops.cc:636 : Resource exhausted: OOM when allocating tensor with shape[32,32,417,417] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
Traceback (most recent call last):
 
    callbacks=[logging, checkpoint])
  File "D:\Anaconda3\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
    return func(*args, **kwargs)
  File "D:\Anaconda3\lib\site-packages\keras\engine\training.py", line 1415, in fit_generator
    initial_epoch=initial_epoch)
  File "D:\Anaconda3\lib\site-packages\keras\engine\training_generator.py", line 213, in fit_generator
    class_weight=class_weight)
  File "D:\Anaconda3\lib\site-packages\keras\engine\training.py", line 1215, in train_on_batch
    outputs = self.train_function(ins)
  File "D:\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 2666, in __call__
    return self._call(inputs)
  File "D:\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 2636, in _call
    fetched = self._callable_fn(*array_vals)
  File "D:\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1382, in __call__
    run_metadata_ptr)
  File "D:\Anaconda3\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 519, in __exit__
    c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[32,32,417,417] 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值