修改linux中的pip源为清华

windows在C:\Users\用户名\pip\pip.ini中

添加这一行,保存即可

 [global]
 index-url = https://pypi.tuna.tsinghua.edu.cn/simple

Linux中如此操作,先升级pip为最新版本,再改源

    pip install pip -U
    pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

 

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于YOLOv8的卡车识别检测计数系统码(部署教程+训练好的模型+各项评估指标曲线).zip 平均准确度:0.97 类别:truck 【资介绍】 1、ultralytics-main ultralytics-main为YOLOv8代码,里面涵盖基于yolov8分类、目标检测额、姿态估计、图像分割四部分代码,我们使用的是detect部分,也就是目标检测代码 2、搭建环境 安装anaconda 和 pycharm windows系统、mac系统、Linux系统都适配 在anaconda新建一个新的envs虚拟空间(可以参考博客来),命令窗口执行:conda create -n YOLOv8 python==3.8 创建完YOLOv8-GUI虚拟空间后,命令窗口执行:source activate YOLOv8 激活虚拟空间 然后就在YOLOv8虚拟空间内安装requirements.txt的所有安装包,命令窗口执行:pip install -r requirements.txt 使用清华安装更快 3、训练模型过程 进入到\ultralytics-main\ultralytics\yolo\v8\detect\文件夹下,datasets即为我们需要准备好的数据集,训练其他模型同理。 data文件夹下的bicycle.yaml文件为数据集配置文件,该文件为本人训练自行车检测模型时创建,训练其他模型,可自行创建。博文有介绍https://blog.csdn.net/DeepLearning_?spm=1011.2415.3001.5343 train.py238行,修改为data = cfg.data or './bicycle.yaml' # or yolo.ClassificationDataset("mnist") 237行修改自己使用的预训练模型 若自己有显卡,修改239行,如我有四张显卡,即改成args = dict(model=model, data=data, device=”0,1,2,3“) 以上配置完成后运行train.py开始训练模型,训练完毕后会在runs/detect/文件夹下生成train*文件夹,里面包含模型和评估指标等 4、推理测试 训练好模型,打开predict.py,修改87行,model = cfg.model or 'yolov8n.pt',把yolov8n.pt换成我们刚才训练完生成的模型路径(在\ultralytics-main\ultralytics\yolo\v8\detect\runs\detect文件夹下),待测试的图片或者视频存放于ultralytics\ultralytics\assets文件夹, 运行predict.py即可,检测结果会在runs/detect/train文件夹下生成。
基于YOLOv8的厨师帽佩戴检测告警系统码(部署教程+训练好的模型+各项评估指标曲线).zip 平均准确率:0.97 类别:厨师帽 【资介绍】 1、ultralytics-main ultralytics-main为YOLOv8代码,里面涵盖基于yolov8分类、目标检测额、姿态估计、图像分割四部分代码,我们使用的是detect部分,也就是目标检测代码 2、搭建环境 安装anaconda 和 pycharm windows系统、mac系统、Linux系统都适配 在anaconda新建一个新的envs虚拟空间(可以参考博客来),命令窗口执行:conda create -n YOLOv8 python==3.8 创建完YOLOv8-GUI虚拟空间后,命令窗口执行:source activate YOLOv8 激活虚拟空间 然后就在YOLOv8虚拟空间内安装requirements.txt的所有安装包,命令窗口执行:pip install -r requirements.txt 使用清华安装更快 3、训练模型过程 进入到\ultralytics-main\ultralytics\yolo\v8\detect\文件夹下,datasets即为我们需要准备好的数据集,训练其他模型同理。 data文件夹下的bicycle.yaml文件为数据集配置文件,该文件为本人训练自行车检测模型时创建,训练其他模型,可自行创建。博文有介绍https://blog.csdn.net/DeepLearning_?spm=1011.2415.3001.5343 train.py238行,修改为data = cfg.data or './bicycle.yaml' # or yolo.ClassificationDataset("mnist") 237行修改自己使用的预训练模型 若自己有显卡,修改239行,如我有四张显卡,即改成args = dict(model=model, data=data, device=”0,1,2,3“) 以上配置完成后运行train.py开始训练模型,训练完毕后会在runs/detect/文件夹下生成train*文件夹,里面包含模型和评估指标等 4、推理测试 训练好模型,打开predict.py,修改87行,model = cfg.model or 'yolov8n.pt',把yolov8n.pt换成我们刚才训练完生成的模型路径(在\ultralytics-main\ultralytics\yolo\v8\detect\runs\detect文件夹下),待测试的图片或者视频存放于ultralytics\ultralytics\assets文件夹, 运行predict.py即可,检测结果会在runs/detect/train文件夹下生成。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hobby云说

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值