NK6_栈、递归_请写一个整数计算器,支持加减乘三种运算和括号。

本文介绍了一种使用单栈实现的整数计算器,支持加、减、乘运算及括号处理。通过递归解决括号内的表达式计算问题,并详细解析了算法流程与核心代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 题目描述
    请写一个整数计算器,支持加减乘三种运算和括号。

  • 输入输出
    在这里插入图片描述

  • 思路

    • 和 数据结构 课本上的实现计算器还不太相同,课本上采用的是开辟两个栈,一个存放括号、运算符,一个存放数值根据栈内运算符的优先级(()的优先级最低),下一个是优先级高的运算符,就压栈,优先级低的运算符,就弹栈一个运算符+两个数值,计算结果再压栈
    • 这个是只用到一个栈,存放各部分的结果值(带符号的存放),(一对括号里的表达式值两个运算符之间的 数值 分别是一个部分),然后最后一次弹栈相加,为所要的结果
    • 需要注意的是,所给表达式中 具有括号的子表达式,需要递归求得结果(可以把一对括号的内容理解为一个number,只不过需要我们递归求出),递归结束返回值number,接着执行下面的压栈
    • 需要注意的是,开始默认的运算符为 ‘+’,默认的数值为 0,当表达式以负数开头的时候,实际上第一次是压栈了一个 + 0 ,接着下次就是记录 负号 ,和数值
  • 代码分析

    • 外层循环控制遍历每个字符
    • 开始分支先判断是否为(),是就需要递归求出括号里面的值,反悔number值,接着执行后面的压栈
    • 接着分支判断字符是否为数字(Character.isDigit()),是数字,就进入下次循环判 直到求出完整的数字
    • 最后分支判断是否为运算符 或者 最后一个字符,(刚进入分支还是记录的上一位的number和 number的前面的运算符,还没压栈,+、-压栈,若是*、\就弹出上 上 一个栈内元素 与 正准备压栈的元素 进行运算后压栈),然后才是记录本次判断的运算符,接着下一轮循环
  • 补充
    算法

  1. 用栈保存各部分计算的和
  2. 遍历表达式
  3. 遇到数字时继续遍历求这个完整的数字的值
  4. 遇到左括号时递归求这个括号里面的表达式的值
  5. 遇到运算符时或者到表达式末尾时,就去计算上一个运算符并把计算结果push进栈,然后保存新的运算符
    • 如果是+,不要计算,push进去
    • 如果是-,push进去负的当前数
    • 如果是×、÷,pop出一个运算数和当前数作计算
  6. 最后把栈中的结果求和即可
  • 解答
    梦开始的地方没错了!
import java.util.*;


public class Solution {
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     * 返回表达式的值
     * @param s string字符串 待计算的表达式
     * @return int整型
     */
    public int solve (String s) {
        // write code here
        //初始化栈
        Stack<Integer> stack = new Stack<>();
        //结果
        int sum = 0;
        //默认数字,运算符
        int number = 0;
        //默认的第一个数字前的运算符为 + 
        char sign = '+';
        
        //字符串转化字符数组
        char[] arr = s.toCharArray();
        int n = s.length();
        
        //对字符数组每个元素遍历
        for(int i = 0;i<n;i++){
            
            char c = arr[i];
            //是否为左括号
            if(c == '('){
                int j = i + 1;
                //默认是1对括号
                int counterPar = 1;
                while(counterPar > 0){
                    //统计是否存在括号嵌套的情况
                    if(arr[j] == '('){
                        counterPar++;
                    }
                    if(arr[j] == ')'){
                        counterPar--;
                    }
                    //向后直到找到右括号
                    j++;
                }
                //遇到左括号递归求这个括号里面表达式的值
                //就是求左括号 到 右括号 之间 表达式的 值,返回值为 number,下面接着进栈
                number  = solve(s.substring(i + 1,j - 1));
                //下一次就要从 j 开始,因为后面还有一个 i ++;
                i = j - 1;
                
                
            }
            //是否为数字,是数字就求完整的数字值,每次循环都进这个分支,直到出现运算符
            if(Character.isDigit(c)){
                number = number * 10 + c - '0';
            }
            //不是数字 或者 为最后一个字符
            if( ! Character.isDigit(c) || i == n - 1){
                
                if(sign == '+'){
                    //是 + 先把 数字 压栈,等会全部数字出栈之和即为所求
                    stack.push(number);
                }
                else if(sign == '-'){
                    //是 - 压栈该数字的相反数
                    stack.push( -1 * number);
                }
                else if(sign == '*'){
                    //是 * ,弹栈算出结果,在压栈
                    stack.push(stack.pop() * number);
                }
                else if(sign == '/'){
                    //是 / ,弹栈算出结果,在压栈
                    stack.push(stack.pop() / number);
                }
                //每次结束,数字恢复默认值
                number = 0;
               // 遇到运算符时或者到表达式末尾时,就去计算上一个运算符并把计算结果push进栈,然后保存新的运算符
                //运算符为 当前压栈数字 前面近邻的那个
                sign = c;
                
                //如果是负数 在 表达式的最前面 ,会先压栈 +0,然后在记录当前 负号,开始接下来的数字
            }
        }
        while(!stack.isEmpty()){
            sum += stack.pop();
        }
        return sum;
        
    }
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scl、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值