hdu 2899 Strange fuction

#include<stdio.h>
//记得求导 
#include<string.h>
#include<stdlib.h>
#include<math.h>
	int t;
	double y;
	double r,rr,ll,m,l;
	double ans;
double f1(double x)
{
	return 42*pow(x,6.0)+48*pow(x,5.0)+21*pow(x,2.0)+10*x-y;
}
double f2(double x)
{
	return 6*pow(x,7.0)+8*pow(x,6.0)+7*pow(x,3.0)+5*pow(x,2.0)-x*y;
}
int main()
{

	scanf("%d",&t);
	while(t--)
	{
		scanf("%lf",&y);
		l=0;
		r=100;
		ll=(l*2+r)/3;
		rr=(l+r*2)/3;
		while(rr-ll>1e-6)
		{
			ll=(l*2+r)/3;
			rr=(l+r*2)/3;
			m=(rr+ll)/2;
			if(f1(m)>0)
			r=m-1e-7;
			else
			l=m+1e-7;
		}
		printf("%.4lf\n",f2(m));
	}
	return 0;
} 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值