技术栈
消息传递
IM解决的问题就是将消息从一个客户端实时准确的传递到另一个客户端
消息传输过程
- 第一步:应用A把消息发送到 TCP发送缓冲区。
- 第二步: TCP发送缓冲区再把消息发送出去,经过网络传递后,消息会发送到B服务器的TCP接收缓冲区。
- 第三步:B再从TCP接收缓冲区去读取属于自己的数据
阻塞IO |非阻塞IO
所谓阻塞IO就是当应用B发起读取数据申请时,在内核数据没有准备好之前,应用B会一直处于等待数据状态,直到内核把数据准备好了交给应用B才结束。
在应用调用recvfrom读取数据时,其系统调用直到数据包到达且被复制到应用缓冲区中或者发送错误时才返回,在此期间一直会等待,进程从调用到返回这段时间内都是被阻塞的称为阻塞IO;
非阻塞IO是在应用调用recvfrom读取数据时,如果该缓冲区没有数据的话,就会直接返回一个EWOULDBLOCK错误,不会让应用一直等待中。在没有数据的时候会即刻返回错误标识,那也意味着如果应用要读取数据就需要不断的调用recvfrom请求,直到读取到它数据要的数据为止。
IO复用模型
有人就提出了一个思路,能不能提供一种方式,可以由一个线程监控多个网络请求(我们后面将称为fd文件描述符,linux系统把所有网络请求以一个fd来标识),这样就可以只需要一个或几个线程就可以完成数据状态询问的操作,当有数据准备就绪之后再分配对应的线程去读取数据,这么做就可以节省出大量的线程资源出来,这个就是IO复用模型的思路。
正如上图,IO复用模型的思路就是系统提供了一种函数可以同时监控多个fd的操作,这个函数就是我们常说到的select、poll、epoll函数,有了这个函数后,应用线程通过调用select函数就可以同时监控多个fd,select函数监控的fd中只要有任何一个数据状态准备就绪了,select函数就会返回可读状态,这时询问线程再去通知处理数据的线程,对应线程此时再发起recvfrom请求去读取数据。
术语描述:进程通过将一个或多个fd传递给select,阻塞在select操作上,select帮我们侦测多个fd是否准备就绪,当有fd准备就绪时,select返回数据可读状态,应用程序再调用recvfrom读取数据。
数据传输载体 - ByteBuf
- ByteBuf 是一个字节容器,容器里面的的数据分为三个部分,第一个部分是已经丢弃的字节,这部分数据是无效的;第二部分是可读字节,这部分数据是 ByteBuf 的主体数据, 从 ByteBuf 里面读取的数据都来自这一部分;最后一部分的数据是可写字节,所有写到 ByteBuf 的数据都会写到这一段。最后一部分虚线表示的是该 ByteBuf 最多还能扩容多少容量
- 以上三段内容是被两个指针给划分出来的,从左到右,依次是读指针(readerIndex)、写指针(writerIndex),然后还有一个变量 capacity,表示 ByteBuf 底层内存的总容量
- 从 ByteBuf 中每读取一个字节,readerIndex 自增1,ByteBuf 里面总共有 writerIndex-readerIndex 个字节可读, 由此可以推论出当 readerIndex 与 writerIndex 相等的时候,ByteBuf 不可读
- 写数据是从 writerIndex 指向的部分开始写,每写一个字节,writerIndex 自增1,直到增到 capacity,这个时候,表示 ByteBuf 已经不可写了
- ByteBuf 里面其实还有一个参数 maxCapacity,当向 ByteBuf 写数据的时候,如果容量不足,那么这个时候可以进行扩容,直到 capacity 扩容到 maxCapacity,超过 maxCapacity 就会报错
- ByteBuf 这个数据结构可以有效地区分可读数据和可写数据,读写之间相互没有冲突,当然,ByteBuf 只是对二进制数据的抽象
拆包粘包
操作系统来说,只认 TCP 协议。 底层操作系统是按照字节流发送数据,因此,数据到了服务端,也是按照字节流的方式读入,然后到了 Netty 应用层面,重新拼装成 ByteBuf,而这里的 ByteBuf 与客户端按顺序发送的 ByteBuf 可能是不对等的。因此,我们需要在客户端根据自定义协议来组装我们应用层的数据包,然后在服务端根据我们的应用层的协议来重新组装数据包,这个过程通常在服务端称为拆包,而在客户端称为粘包
消息的同步和存储
读扩散
消息存储模型中,每个会话的Timeline中保存了这个会话的全量消息。读扩散的消息同步模式下,每个会话中产生的新的消息,只需要写一次到其用于存储的Timeline中,接收端从这个Timeline中拉取新的消息。 优点是消息只需要写一次,相比写扩散的模式,能够大大降低消息写入次数,特别是在群消息这种场景下。但其缺点也比较明显,接收端去同步消息的逻辑会相对复杂和低效。接收端需要对每个会话都拉取一次才能获取全部消息,读被大大的放大,并且会产生很多无效的读,因为并不是每个会话都会有新消息产生。
写扩散
写扩散的消息同步模式,需要有一个额外的Timeline来专门用于消息同步,通常是每个接收端都会拥有一个独立的同步Timeline,用于存放需要向这个接收端同步的所有消息。 每个会话中的消息,会产生多次写,除了写入用于消息存储的会话Timeline,还需要写入需要同步到的接收端的同步Timeline。在个人与个人的会话中,消息会被额外写两次,除了写入这个会话的存储Timeline,还需要写入参与这个会话的两个接收者的同步Timeline。而在群这个场景下,写入会被更加的放大,如果这个群拥有N个参与者,那每条消息都需要额外的写N次。 写扩散同步模式的优点是,在接收端消息同步逻辑会非常简单,只需要从其同步Timeline中读取一次即可,大大降低了消息同步所需的读的压力。其缺点就是消息写入会被放大,特别是针对群这种场景。
消息存储
消息同步库用于存储所有用于消息同步的Timeline,每个Timeline对应一个接收端,主要用作写扩散模式的消息同步。 这个库不需要永久保留所有需要同步的消息,因为消息在同步到所有端后其生命周期就可以结束,就可以被回收。但是如前面所介绍的,一个实现简单的多端同步消息系统,在服务端不会保存有所有端的同步状态,而是依赖端自己主动来做同步。 所以服务端不知道消息何时可以回收,通常的做法是为这个库里的消息设定一个固定的生命周期,例如一周或者一个月,生命周期结束可被淘汰
消息存储库用于存储所有会话的Timeline,每个Timeline包含了一个会话中的所有消息。这个库主要用于消息漫游时拉取某个会话的所有历史消息,也用于读扩散模式的消息同步。
数据库选型
HBase存储IM消息,RowKey设计
RowKey设计原则
唯一原则 - 必须在设计上保证其唯一性。由于在HBase中数据存储是Key-Value形式,若HBase中同一表插入相同Rowkey,则原先的数据会被覆盖掉。
排序原则 - HBase的Rowkey是按照ASCII有序设计的,我们在设计Rowkey时要充分利用这点。
散列原则 - 我们设计的Rowkey应均匀的分布在各个HBase节点上。
长度原则 - Rowkey是一个二进制,建议是越短越好。
HBase存储IM消息,RowKey设计
会话%20 | 会话id | 逆序消息id
会话取模值的目的为数据分区(region)存储,预分区能够分摊数据读写压力;
会话id确定唯一会话,一个群里的所有消息拥有相同的会话id;
逆序消息id确定唯一消息和拉取最新消息序,逆序确保越新的消息id值越小,IM软件里,总是先显示群里的最新消息,向上滑动界面再加载之前的消息
1071011279223370402209510624
查询会话消息:107101127
scan "message",{STARTROW => '107101127' ,ENDROW => '107101127~' , FORMATTER => 'toString'}