大型语言模型(Large Language Models, LLMs)是指通过深度学习技术训练而成的、具有数十亿甚至数万亿参数的神经网络模型。这些模型能够理解和生成自然语言,广泛应用于各种自然语言处理(NLP)任务,如文本生成、翻译、问答、情感分析等。以下是关于大型语言模型的详细说明:
1. 架构与原理
大型语言模型通常基于Transformer架构。Transformer架构是2017年由Google Brain团队在论文《Attention Is All You Need》中提出的,它引入了注意力机制(Attention Mechanism),使得模型能够更有效地处理长距离依赖关系,并显著提高了对语言结构的理解能力。
- 自注意力机制(Self-Attention):允许模型中的每个位置都能关注到输入序列中的所有其他位置,从而捕捉到全局上下文信息。
- 多头注意力(Multi-Head Attention):通过并行地使用多个注意力机制,可以同时关注不同类型的上下文信息。
- 编码器-解码器结构(Encoder-Decoder Architecture):编码器将输入序列转换为一个固定长度的向量表示,解码器则根据这个向量